APPLICATION OF Bhatian AND LASSEN MODELS OF GENRE ANALYSIS TO TECHNICAL MANUALS
APPLICATION OF Bhatian AND Lassen Models OF Genre Analysis TO Technical Manuals
APPLICATION OF BHATIA AND LASSEN MODELS OF GENRE ANALYSIS TO TECHNICAL MANUALS

Ángel Felices Lago
Diana Fernández Lloret

With a Foreword by
Inger Lassen
Dedicated to our families with all our love, to whom we both owe so much…
TABLE OF CONTENTS

Page Number

Keys to the Tables
Keys to the Figures

Abstract..i

Foreword by Inger Lassen..ii

Abbreviations...iv

Introductory Preface..1

General Objectives..1
Organization..2

Part I

I. THEORETICAL FRAMEWORK...5

I.1. Some Remarks on Applied Linguistics...5

I.2. Interpretation of Discourse...10

I.3. Specialized and Professional Languages...11
I.3.1. Genres and Specialized Languages.................................12

I.4. Genre Analysis: Types and Theoretical Views.........................13
 I.4.1. The Concept of Genre and Specialized Communication.
 Historical Contributions to the Definitions of Genre........15
 I.4.2. A Definition of Genre Analysis..................................18
 I.4.3. The Model of Genre Analysis proposed by Vijay Bhatia
 and its Applications to Specialized Discourses..............19

I.5. Key Concepts in Bhatia: Integrity,
 Systems of Genres and Genre Colonies.............................22

I.6. Instruction Manuals: General Aspects
 and Previous Studies..28
 I.6.1.1. Author-Audience Relationship............................32
 I.6.1.2. The Factor of Time...33
 I.6.1.3. Grammar and Organization.................................34
 I.6.1.4. Communities of Discourse................................35
 I.6.1.5. Instruction Manuals: Syntactic, Semantic, Lexical
 and Discursive Characteristics.........................35
 I.6.1.6. Recommendations for Writing Instructions.............39

I.7. A New Proposal..40
Part II

II. OBJECTIVES AND HYPOTHESES

II.1. Objectives

II.2. Hypotheses and Basic Assumptions
 II.2.1. Fundamentals

II.3. Theories and Facts to be Demonstrated

Part III

III. GENRE ANALYSIS OF SILESTONE TECHNICAL MANUALS

III.1. Inger Lassen’s Model of Genre Analysis in the Field of Technical Communication and her Contribution to Bhatia’s Genre Analysis Model

III.2. Methodology for the Genre Analysis of Technical Manuals
 III.2.1. Genre Analysis of Silestone Technical Manuals
 Part 1: “Characteristics”
 Part 2: “Installation Guide”
 Part 3: “Care & Maintenance”

III.2.2. The Silestone Fabrication Manual

III.2.3. The Silestone Training Manual – Installation Guide

III.2.4. The Silestone Brochure Manual
 “Silestone Quartz Surfaces & You”
III.3. Parallels and Contrasts between Lassen’s Model for Technical Manuals and this Contribution..........................105

Procedure...105

Part IV

IV. Discussions and Conclusions...132

IV.1. Discussions...132
IV.2. Conclusions...136

References..140

Index..152
Keys to the Tables

<table>
<thead>
<tr>
<th>Table 1:</th>
<th>Graphic Genre Analysis of “Part 1 - Characteristics”</th>
<th>Page Number 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2:</td>
<td>Graphic Genre Analysis of “Part 2 – Installation Guide”</td>
<td>Page Number 69</td>
</tr>
<tr>
<td>Table 3:</td>
<td>Graphic Genre Analysis of “Part 3 – Care & Maintenance”</td>
<td>Page Number 75</td>
</tr>
<tr>
<td>Table 4:</td>
<td>Graphic Genre Analysis of the Silestone Training Manual</td>
<td>Page Number 93</td>
</tr>
<tr>
<td>Table 5:</td>
<td>Graphic Genre Analysis of the Silestone Brochure Manual</td>
<td>Page Number 101</td>
</tr>
<tr>
<td>Table 6:</td>
<td>III.3.1. Table for the Genre Analysis of the Silestone Fabrication Manual- Instruction Manual</td>
<td>Page Number 108</td>
</tr>
<tr>
<td>Table 7:</td>
<td>III.3.2. Table for the Genre Analysis of the Silestone Training Manual- Installation Guide</td>
<td>Page Number 109</td>
</tr>
<tr>
<td>Table 8:</td>
<td>III.3.3. Table for the Genre Analysis of the Silestone Brochure Manual</td>
<td>Page Number 110</td>
</tr>
<tr>
<td>Table 9:</td>
<td>III.3.4. Comparison Table for the Genre Analysis of other Technical Manuals I (12 Engineering Technical Devices)</td>
<td>Page Number 111</td>
</tr>
<tr>
<td>Table 10:</td>
<td>III.3.5. Comparison Table for the Genre Analysis of other Technical Manuals II (4 electronic devices, 1 natural stone product)</td>
<td>Page Number 112</td>
</tr>
<tr>
<td>Table 11:</td>
<td>III.3.6. Number and Percentages of Moves Equivalence with Lassen’s Move-Model</td>
<td>Page Number 113</td>
</tr>
<tr>
<td>Table 12:</td>
<td>III.3.7. Highlighted Aspects and Relevant Comments – Variations and Changes in the Technical Manuals</td>
<td>Page Number 114</td>
</tr>
</tbody>
</table>
Table 13 III.3.7.1. Table for the Genre Analysis of the
“Silestone Fabrication Manual – InM”.................................114

Table 14 III.3.7.2. Table for the Genre Analysis of the
“Silestone Training Manual - IG”...117

Table 15 III.3.7.3. Table for the Genre Analysis of the
“Silestone Brochure Manual” – BM.......................................119

Table 16 III.3.7.4. Comparison Table 1 for the Genre Analysis of other
“Technical Manuals I (12 Engineering Technical Devices)”......120

Table 17 III.3.7.5. Comparison Table 2 for the Genre Analysis of other
“Technical Manuals II (4 Electronic Devices,
1 Natural Stone Product)”..127

Table 18 III.3.7.6. Summary Table: Number and Percentages of
Move Equivalence with Lassen’s Move-Model.........................129
Keys to the Figures

Photographs kindly given by The Andalusian Stone Technology Centre (CTAP)

and one Silestone photograph taken from the Silestone company web:
http://www.silestone.es/showroom/cocinas/...Front cover
Abstract

The need for specialised communication is becoming increasingly important in linguistics and other disciplines. This explains why professionals are interested in the study, organisation and structure of specialised texts, and this takes us back to Vijay Bhatia’s questions: “why is a text written the way it is?” or “why do members of a specialised community construct texts the way they do?” (Bhatia, 2004). Genre analysis applied to different specialised settings is intended to offer a clear view of the description of language in specialised contexts. Texts are no longer seen as merely form and content, and genre is no longer perceived as the socio-pragmatic form in which content is reflected. Instead, texts are identifiable not only through form but also through purposes, theme, writer and intended reader. This analysis has taken into account all of these parameters and each sample manual includes a set of communicative purposes (Lassen, 2003). Therefore, Bhatia’s idea that communicative purposes shape texts—the purposes allowing the creation of moves—has been the starting point of this study. An in-depth analysis of a corpus of technical texts has enabled us to ascertain how moves, steps and sub-steps operate in each specific case and how communicative purposes vary. Then, it may be stated that although Lassen’s model has proved to be both useful and feasible, some changes and variations in its communicative structure are required, although these changes might depend on the communicative needs of the texts. Moreover, once the analyses had been carried out, not only were certain differences in structure or design noticed but it was also observed how each specialised text shows specific communicative ideas that need to be represented through Bhatian moves, steps and sub-steps. Consequently, a proposal is herein developed in order to improve some aspects of the Bhatian model and of Lassen’s application model as a possible contribution to the field of genre analysis.
Foreword by Inger Lassen

The study presented here is situated within the field of genre analysis, working from the premise that models should be pattern seeking rather than pattern imposing. Following Bhatia’s prediction that the integrity of genres will be affected by demanding needs of society, the research is an unusually well-designed method of practical application that provides helpful strategies for teaching technical communication, and useful insights are gained from the study that meticulously compares a number of different technical manuals. Moreover, the study has a firm theoretical foundation in genre theory (Swales, Bhatia, Martin), as demonstrated in the insightful literature review offered in the introductory chapters. This is followed by a description of the empirical data, an analytical chapter from which results are deduced and finally, a discussion of the results and a conclusion.

The theoretical contribution of the study lies in the application of what is referred to as the Lassen model, developed for analyzing the parent genre of technical manuals. On the basis of this model, Felices-Lago and Fernández Lloret carry out in-depth analyses of three Silestone manuals, and to provide a more solid basis for making claims, they extend the analyses to cover a further seventeen manuals from various fields, covering different product areas such as engineering technical devices used in the food, petrochemical, energy sectors and electronic devices. The authors work from various hypotheses with the main purpose of establishing whether the Lassen model can be applied to all technical manuals and whether it is advisable to adapt the model. Although one of their primary concerns is to explore how communicative purposes may be shaped through moves, they pay a great deal of attention to the ways in which the manuals studied are structured in steps and sub-steps because these structures seem to vary from one manual to the
next. This leads the authors to conclude that there is a need for adaptation of the
Lassen model to accommodate variation in the ways in which steps and sub-steps
are structured, while the model seems to provide an adequate representation of the
moves and communicative purposes identified in the manuals that formed the
empirical basis of the study.

The work described in this foreword represents an original, carefully designed and
well argued study within the scarcely researched field of technical
communication. Its main contribution lies in pointing out the need of a flexible
model for analyzing technical manuals, and in suggesting an approach to
identifying main problem areas in genre analysis models. The study thus suggests
an approach that may be generalized to similar technical communication studies,
and bearing in mind Bhatia’s prediction that genre integrity will be influenced by
exigent demands of society, a flexible model like the one suggested here might
facilitate research in new and so far under-researched areas, such as internet-based
technical manuals.

Department of Culture and Global Studies,
Aalborg University, Denmark
Introductory Preface

“Language shapes the way we think, and determines what we can think about.”

(Benjamin Lee Whorf)

General Objectives

This study entitled “Application of Bhatian and Lassen Models of Genre Analysis to (Silestone) Technical Manuals” can be framed within the field of “English for Specific Purposes (ESP)”, or more precisely, within “English for Technical Purposes”. It mainly focuses on the genre analysis of technical manuals to help not only students interested in the field of English technical communication but also professionals and users working in the field.

This research will deal with specialised texts written in technical English, whose aim is not only to teach English, but to teach different uses of technical texts as a means of specialised communication in professional settings. The compilation of technical manuals in this work has allowed us to depict how English in specialised settings is currently evolving and changing.

The main purpose herein is to show how, by means of genre analysis, technical texts may not only be understood better but also how new light can be shed on the way they are constructed, why the members of a specialised community use them the way they do and how the communicative purposes are conveyed.

This study, although framed within the field of ESP, may offer didactic suggestions for both students and professionals, since genre analysis is one of the most important devices for the analysis of specialised texts. This is due to the fact
that this analysis does not understand the text only as a type but also takes into consideration a wide range of linguistic, rhetorical and contextual features that reinforce the communicative structure.

An analysis of this kind in specialised settings is suggested and improvements and variations on the model are proposed. This proposal is intended to be applied to authentic technical manuals written in English and constitutes a useful linguistic device for obtaining relevant information about the English language when applied to professional contexts. Even though genre analysis here has been applied to texts written in English, it could be possible to apply it to other languages, always in specialised settings.

The aim of this study is to give an overview of how technical texts are constructed, how communication goals are conveyed and, therefore, if texts contribute successfully to the communicative process. The homogeneity of texts depends on the variety of technical manuals examined, and despite them all belonging to the same parent genre, there will be similarities and differences affecting audience, structure, format, organisation of ideas, communicative purposes and linguistic features. Genre analysis is consequently a useful methodological device to better know the characteristics that integrate texts into a specific discourse community. As may be observed in sections 3 and 4, this contribution to the study of genre analysis might be a useful proposal for future analyses in professional settings.

Organisation

This study has been structured in 4 sections. The first section starts with a review of the relevant literature and gives a general overview of language and communication in professional and specialised settings through a historical perspective. At this point, some remarks on genre analysis theories and studies are
The contributions of John Swales, Vijay Bhatia and Inger Lassen will be the cornerstone of this work. The section will also deal with different genres and the main characteristics of technical manuals as a genre.

In **section two**, the objectives of this study are described and hypotheses are formulated.

Section three forms the basis of this dissertation:

1. **Theoretical Overview.** A theoretical framework of Genre Analysis and the state of the art of Genre Studies are given as the introductory part of this work.

2. **Corpus compilation** (selection of technical manuals). This section describes how texts have been compiled and organised according to Lassen’s classification for technical manuals.

3. **Corpus analysis.** Only *Silestone* technical manuals are examined in detail. Firstly, an explanation of Silestone texts is given, followed by an account of the analysis. In addition, a brief explanation of the remaining technical manuals is carried out to provide background information for the analyses of tables in the subsequent sections.

As mentioned above, the final part of this section contains parallel and contrast tables which show the results which were obtained by applying the model to technical manuals. Results are displayed to generate a general overview of how moves and steps occur in manuals by developing communicative purposes. Moreover, the occurrence of such moves in the corpus and the most relevant comments and examples will be presented in two final tables.

Section four is a “Discussions and Conclusions” Chapter where a more elaborated explanation of the results will be presented, according to the results
obtained from both the genre analysis of *Silestone* technical manuals and the results of the remaining technical manuals. In the “Conclusions” part, a general interpretation of the results will be discussed. This section will also evaluate the whole study in order to reach a final conclusion.

A list of bibliographical references is provided at the end of the book with examples of the manuals analysed.
Part I

THEORETICAL FRAMEWORK

The present study focuses on language and communication in professional and specialised settings. Within this framework, a linguistic-discursive panorama from whose origins to the present will be presented in order to provide an overview of the current situation of language in professional areas according to linguistic studies, and how language and communication contribute to professional and technical contexts.

I.1. Some Remarks on Applied Linguistics

The study of language in professional settings is currently one of the main areas of research interest in linguistics. Moreover, due to the fact that professional communication is currently becoming increasingly important, it has also led linguists to analyse language in all its aspects both internally and externally, therefore giving rise to the development of a branch of applied linguistics.

Nonetheless, it can be stated that linguistics responds to the communicative changes requested by society, and seeks to respond to all present communication needs. In order to achieve this goal, we must offer an overview of the development of linguistics in order to further understand this process.

Applied linguistics, on one hand, takes theoretical linguistics as its rationale and, on the other, attempts to fill in the gaps uncovered by theoretical linguistics. Therefore, applied linguistics uses all previously developed concepts such as Saussure’s Linguistic Sign, Noam Chomsky’s Syntactic Structures (1957) or Hymes’ Communicative Competence (1972) to name just a few relevant
examples, in order to adapt applied linguistics to the current communicative needs of professional contexts. Applied linguistics is thus influenced by theorists of ethnology, sociology, sociolinguistics and also mathematics and philosophy in an attempt to offer a broad vision of language. Nevertheless, these disciplines on their own do not respond to modern society’s communicative needs, due to their fixed and static character, (although in combination with each other and with a broad vision for the future they may account for the current claims of the everyday changing society (Dolón & Suau, 1997: 2-7).

In this way, applied linguistics covers a great number of settings which can be categorised under the following headings: educational, economic/technical, legal and bureaucratic, socio-medical, workplace, scientific and academic. It is clear that all these professional activities focus on Language for Specific Purposes (LSP). Therefore, the broadening scope of linguistics in general has expanded applied linguistics research since it encompasses not only language acquisition and teaching, but also pragmatics, discourse analysis, sociolinguistics and text linguistics, among others (Lassen, 2003: 3).

It is also worth noting the practical nature of modern applied linguistics and that it has become highly useful for the analysis of documents within a business-technical setting. Moreover, it shows how technical manuals and their guidelines are written and how their structure is analysed.

It would be worthwhile considering “discourse analysis” as a key factor within applied linguistics, and thus attempting to understand the application of genre analysis as an important analytical device.

With regard to discourse analysis and historical developments in the analysis of written discourse, it is important to carry out a brief review of the origins of discourse up to the present day, in order to comprehend how meaning is
constructed through the combination of sentences, in accordance with the construction of a whole discursive or textual meaning.

In the sixties and early seventies, analysis of language was overly influenced by formal linguistics, and therefore confined to surface-level features of language. However, studies of the sentence unit as its maximum representative element were modified in order to adopt suprasentential units as the main object of study to account for the linguistic realities and needs of the world. Professional languages were studied and consequently, the field of English for Professional or Occupational Purposes (EOP) was created. As a consequence of this attempt to develop a theoretical basis, many other disciplines such as ethnolinguistics, pragmatics, sociolinguistics etc., took part in the creation of a theory for ESP/EOP, taking the “communicative event” as their rationale. At the time of writing, textual analysis within context is of increasing importance and its theoretical basis will be applied and demonstrated in practical terms in this investigation. Moreover, the concept of a communicative event could be applied to all cultures in order to determine their communicative behaviour (Dolón & Suau, 1997: 6, 10).

The concept of a “communicative event” was developed by Hymes (1972) and can be used to deal with the communicative reality of professional contexts; for example, in technical contexts. As Boswood points out, the concept of communicative event allows:

“To contribute to research and develop projects focusing on community language needs, specific purpose course design and programme evaluation. Through close engagement with the contexts of communication, ESP practitioners can further develop their ability to contribute positively and directly to the development of their students’ abilities and to the development of their client communities.” (Boswood, 1994: 57)

As previously stated, the topic of “technical communication” dealt with here, can
be placed within the field of ESP and also in that of EOP, in the sense that major communicative needs are developed within professional settings in order to express specific events according to the communicative language needs of the moment. Moreover, specific English has been related to general language which according to Sager, Dungworth & McDonald (1980: 69):

“Special languages are semi-autonomous, complex semiotic systems based on and derived from general language: their use presupposes special education and is restricted to communication among specialists in the same or closely related fields.”

From the previous statement, it could be deduced that a specialised language such as “technical English” is a specific language derived from general English that can only be used among specialists of a certain technical context. Furthermore, it can only be applied to specific technical contexts, where professionals use this tool called “technical English” as a code to communicate within the field of technical communication. Therefore, the contextualisation of language is fundamental to the understanding of how specialised languages are developed in specialised communication as will be discussed below.

Other authors such as Bloor & Bloor (1986) establish a parallel between the specialty of occupational English and the contextualisation of language: “…the use of language, being geared to situation and participants, is learnt in appropriate contexts. (…) LSP, almost by definition, is language in context.” (Bloor & Bloor, 1986: 28).

Discourse analysis has been closely linked to ESP or EOP and many theorists have contributed to a full understanding of ESP. “Genre theory”, for instance, has greatly influenced ESP or EOP. To illustrate this, Swales concludes:

“Work on genres would appear to have a number of implications for the future development of ESP. Genre-analysis has reiterated the importance of information
structuring and ordering. (...) It is only within genres that viable correlations between cognitive, rhetorical and linguistic features can be established – for it is only within genres that language is sufficiently conventionalised, and the range of communicative purposes sufficiently narrow, for us to hope to establish pedagogically-employable generalisations that will capture useful relationships between function and form.”(1988: 212-213).

Regarding the statement above, ESP may best be developed within the framework of genre analysis. This is due to the fact that genre analysis allows us to identify the communicative purposes in the structure of specialised texts and establish a relationship between those communicative purposes and the form of such texts, which gives as a result a specific genre; this would be the case with “technical manuals”. Therefore, this explains the importance of suprasentential units to better understand the functioning of specialised languages.

These analyses were influenced by experts in the field of applied linguistics, in which Halliday stands out as the most representative figure in the study of language variation with “register”. The interest in this field led to the extension of the scope of clause-level units to larger rhetorical structures such as extended clause-relations (Winter, 1977); macro-structures in text-linguistics (van Dijk 1977 et al.); information structures (Hoey, 1983); “predictive structures” (Tadros, 1985) and rhetorical structures (Trimble, 1982; Bhatia, 2004). This kind of engagement with the structuring of discourse was taken further by those involved in the analysis of text as genre, relating structures to communicative purposes serving the genres in question (Bhatia, 2004: 9). These structures were later understood as “moves”, rather than schematic structures, as proposed by Swales (1981a, 1990) and Bhatia (1982, 1993). Due to this quest for more detailed and grounded description of language use, discourse analysts started considering the context of language use in a more serious way: context, both the immediate context in the form of what surrounds a particular text, and also context in a much broader sense, in the form of “what makes a particular text possible” and “why
most of the professionals from the same disciplinary culture construct, interpret and use language more or less the same way in specific rhetorical situations” (Bhatia, 2004: 9). It is at this point that we can note an increasing interest in the organisation of discourse as genre in the form of move structures, with moves being considered as cognitive structures.

Returning to the concept of context, it is important to highlight that context was acquiring importance in the study of discourse analysis, particularly in specific institutional and professional settings in order to observe and consequently understand how members of specific communities construct and interpret genres to achieve their communicative goals, and why they write the way they do (Bhatia, 2004).

As a result, it is evident that language use calls for explanation rather than description and this has led to “genre analysis” playing a significant role in linguistics. Furthermore, although register variables are capable of describing how language is used, they do not explain why language is used differently from one institutional or cultural context to another. Consequently, perspectives on language use have led to the adoption of genre theory as the appropriate analytical tool for text and its components (Lassen, 2003).

I.2. Interpretation of Discourse

Before moving on to genre analysis, it would be relevant first to analyse and define some of key the concepts of discourse, such as “context”, which is where and how the communicative event takes place. From a pragmatic point of view, context has been considered to be a set of variables: the space-situational dimension, co-text and extralinguistic context (Alcaraz, 2000: 109-110).
Other relevant aspects to be analysed, discourse typology and discourse modalities. As the one which best suits the present communicative needs of this study, we have chosen Fairclough’s definition of discourse as a three-dimensional concept including (Lassen, 2003):

1. A piece of text
2. An instance of discursive practice
3. An instance of social practice

There has always been an attempt to classify discourse throughout the history of linguistics and rhetoric since the times of Aristotle (Alcaraz, 2000: 119). Among the most innovative attempts to do so from a socio-communicative perspective are the works of Halliday (1978, 1985). Kinneavy (1981: 53) distinguished four types of discourse: referential, persuasive, literary and expressive, whereas Alcaraz Varó following other authors distinguished five discursive modes: descriptive, narrative, expositive, persuasive and conversational (Alcaraz, 2000: 120). All these aspects will be taken into account when examining the corpus of technical manuals in section 3.

I.3. Specialised and Professional Languages

Specialised and professional languages are employed among specialists and are characterised by certain pragmatic and cognitive elements. The pragmatic elements are: field, users and the communicative situation. Specialised language is used in a “determined” communicative situation (Sager et al., 1980: 68) [own translation from “situaciones comunicativas ‘marcadas’”]. The communicative situation implies the existence of variants, types of texts and genres (Swales, 1990; Bhatia, 1993). Moreover, the concept of “specialised theme” [own translation from “temática especializada”] proposed by Cabré Castellví is considered a relevant aspect to determine or delimit a professional or specialised language, since it somehow identifies the type of field. “Specialised theme” can
be better understood in the following Cabré Castellví’s opinion (2002: 196):

“(…) no podemos decir que sea la temática el factor que determina la especialidad del discurso, sino que lo que identifica el discurso especializado será la forma cómo se expresa y comunica esta temática, forma condicionada a cómo se ha conceptualizado. Un discurso sobre un tema será especializado si y sólo si transmite una estructura conceptual reconocida por los expertos del ámbito como propia de este ámbito.”

Accordingly, “specialised theme” cannot be understood without defining what a “specialised text” is within context. According to Cabré Castellví (2005: 196), therefore, a specialised text could be defined as follows:

“Los textos especializados devienen en consecuencia conjuntos de unidades de información estructuradas lingüísticamente cuya principal característica semántica es su precisión, siempre en relación a un esquema conceptual preestablecido (y aprendido) y reconocido por los expertos de cada ámbito….En síntesis, un discurso es especializado si se cumplen las siguientes condiciones con relación al tratamiento temático: precisión conceptual: significado discreto; ubicación estructural; establecimiento explícito y sanción por el grupo experto.”

I.3.1. Genres and Specialised Languages

In addition to the previous perspective on specialised languages, other definitions are also proposed: “La herramienta exclusiva de las LE se reduce a los términos técnicos, frecuentemente con algunas particularidades morfológicas en la formación de las palabras y, en parte, a ciertas estructuras textuales y tipos de textos” (Schifko, 2001:23)

As can be appreciated in Schifko’s statement, a clear introduction to the concept of “textual genre” is observed, which he calls “text types”. However, he considers terminology to be the key factor in determining specialised languages. This
statement remains vague and incomplete in current linguistics; consequently there is a need to define this concept more in detail (García Izquierdo, 2007: 120).

According to Cabré and Etopá (2005: 69), “there is a set of characteristics that allow us to differentiate specialised communication from other types of communication”. In her opinion, among the relevant factors which take part in the so-called specialised situations are: the nature of the speaker, the recipient, the situation, the specialised theme and the basic communicative functions. All these factors, developed in specialised situations, possess specific structural characteristics. As previously stated by Cabré (2002), in specialised texts there is a formal structure (related to textual genre), an informal structure (a cognitive structure that represents knowledge) and a grammatical structure (linguistic structures that shape text) (García Izquierdo, 2007: 120).

I.4. Genre Analysis Types and Theoretical Views

According to Bhatia (1993; 2004), the history and development of applied discourse analysis over the last thirty years has progressed through at least four levels of linguistic description:

 As stated previously, the identification of statistically significant lexico-grammatical features of a linguistic variety was developed by Halliday et al. (1964).

2. Functional language description: grammatical-rhetorical analysis.
 As indicated in Selinker, Lackstrom and Trimble (1973:1), they aim to investigate the relationship between grammatical choice and rhetorical function in written English for Science and Technology (EST).

3. Language description as discourse: interactional analysis.
 This can be summarised as: applied discourse analysis, Widdowson
(1973); speech functions, Candlin et al. (1974, 1980); analysis of interactive discourse, Sinclair and Coulthard (1975); analysis of predictive structures, Tadros (1981); clause relations, Winter (1977) and Hoey (1979), where the notion of interpretation of discourse lies with the reader/listener as a result of their interpretations of the text (Bhatia, 1993: 5-10).

As stated by Bhatia (1993: 8) “interactional analysis is valuable for the significant contribution that it has made to the theory and practice of discourse analysis by highlighting the interactive nature of discourse and also by focusing on the notion of structuring in language use”.

In Bhatia’s previous statement, we can understand how he observes the hybrid nature of discourses and their capacity for interaction even if they do not belong to the same field. He would further refer to this as “intertextuality”. Moreover, he also highlights the importance of the structuring of discourse, which he later transforms into genre analysis, structuring discourse in terms of communicative purposes.

4. **Language description as explanation: genre analysis.**

Discourse analysis moves from surface-level analysis to a detailed description of language in use in three aspects: firstly, the values in which the features of language were assigned in specialist discourse; secondly, in the way the discourse was seen as an underlying interaction between the writer and the reader, which Candlin and Loftipour-Saedi (1983) call equalisation of the writer’s and the reader’s discourse processes; and thirdly, in the attention that was given to structuring the discourse (Bhatia, 1993:10).

Therefore, as Bhatia points out (1993: 10), applied discourse analysis appeared to be inadequate since, firstly, it lacked adequate information about the rationale
underlying various discourse-types, which in other words meant insufficient explanation of the socio-cultural, institutional and organisational constraints and expectations that influence the nature of a particular discourse-genre. Secondly, it paid little attention to the conventionalised regularities in the organisation of various communicative events. Consequently, Bhatia proposes moving towards a deeper description of discourse analysis, rich in socio-cultural, institutional and organisational explanations. This point will be discussed in the following sections.

Finally in this study, the theories concerned with genre analysis are those which operate from a common platform: that of “communicative purpose”. Consequently, the approaches are basically those of Swales (1990), Bhatia (1993, 2004), Lassen (1998, 2003) and certain theorists working within Systemic Functional Linguistics.

I.4.1. The Concept of Genre and Specialised Communication. Historical Contributions to the Definition of Genre

According to Swales (1990: 58), “genre is a constitutive aspect of specialised languages”. Swales is one of the precursors of genre analysis in the field of EAP, and his theories and statements have been also applied to other professional fields such as business, academic, technical and legal settings. Before moving on to theories concerning genre analysis, some explanatory definitions related to genre analysis will be presented in order to fully understand all the information explained in this research project.

One of the key concepts in genre analysis is “speech community”, which has been an evolving concept and object of study for many sociolinguists such as Hudson (1980), Saville-Troike (1982) or Braithwaite (1984), or other linguists such as Lavob (1966) or Fishman (1971). As a result Swales (1990: 23) concludes that a
speech community “is seen as being composed of those who share functional rules that determine the appropriacy of utterances”, and others such as Hymes who argue that:

“A speech community is defined, then, tautologically but radically, as a community sharing knowledge of rules for the conduct and interpretation of speech. Such sharing comprises knowledge of at least one form of speech, and knowledge also of its patterns of use. Both conditions are necessary.” (1974: 51)

Hence speech community can be interpreted as a set of shared linguistic forms, shared regulative rules and shared cultural concepts (Swales, 1990:24).

Another key concept in genre analysis is “discourse community”, which according to Swales (1990: 24-27) could be understood as “a group of individuals” which has a broad, agreed set of common public goals; has mechanisms of intercommunication among its members; uses participatory mechanisms primarily to provide information and feedback; utilises and therefore possesses one or more genre in the communicative furtherance of its aims; has acquired some specific lexis; has a minimum number of members with a suitable degree of relevant content and discourse expertise.

Returning now to the concept of genre, some definitions will be provided in order to offer a general idea of the evolution of this rather tenuous and ‘fuzzy’ concept in the area of linguistics. However, one fact remains clear: genre is used today to refer to any type of discourse, either spoken or written.

- Genre in linguistics: Among ethnographers contributing to the notion of “genre”, we can find authors such as Hymes or Saville-Troike. For instance, the ethnographer Hymes (1974: 61) states that:

“Genres often coincide with speech events, but must be treated as analytically independent of them, they occur in (or as) different events. The sermon as a genre is
typically identified with a certain place in a church service, but its properties may be invoked, for serious or humorous effect, in other situations.”

Nevertheless, Swales does not agree with Hymes as he analytically separates genre and speech events. Another point of view, in line with Swales’ perspective, is that of Saville-Troike (1982), also an ethnographer. She considers genre as a type of communicative event.

The concept of genre has also been discussed in recent years by systemic or “Hallidayean” linguists, where the relationship between register and genre does not remain very clear. Register is seen as “a contextual category correlating groupings of linguistic features with recurrent situational features” (Gregory and Carrol, 1978:4) and has been analysed in compliance with three variables: field (content), tenor (status and role relationships of the participants) and mode (channel of communication).

Martin (1985) establishes genre as an underlying system of register, whereas Couture (1986) makes a distinction between register and genre. Register imposes constraints at the linguistic levels of vocabulary and syntax, whereas genre constraints operate at the level of discourse structure. For Couture, these two concepts need to be considered separately, as genres are a completable structured text, whilst register represents a stylistic choice (Swales, 1990: 41):

“Aside from scholars such as Martin, Rothery and Couture, linguistics as a whole has tended to find genre indigestible. The difficulty seems to derive from the fact that register is a well-established and central concept in linguistics, while genre is a recent appendage found to be necessary as a result of important studies of text structure. Although genre is now seen as valuably fundamental to the realisation of goals, and thus acts as a determinant of linguistic choices, there has been an understandable unwillingness to demote register to a secondary position […]”
I.4.2. A Definition of Genre Analysis

In his attempt to define the ‘fuzzy’ concept of genre analysis, Swales has taken into account all the statements and perspectives of other authors in this field such as those which have been previously explored here. After considering diverse statements and theories, even though there are still some ‘loose ends’ in the construction of a definition of genre, Swales came to the following conclusion:

“A genre comprises a class of communicative events, the members of which share some set of communicative purposes. These purposes are recognised by the expert members of the parent discourse community, and thereby constitute the rationale for the genre. This rationale shapes the schematic structure of the discourse and influences and constrains the choice of content and style. Communicative purpose is both a privileged criterion and one that operates to keep the scope of a genre and is here conceived and narrowly focused on comparable rhetorical action. In addition to purpose, exemplars of a genre exhibit various patterns of similarity in terms of structure, style, content and intended audience. If all high probability expectations are realised, the exemplar will be viewed as prototypical by the parent discourse community. The genre names inherited and produced by discourse communities and imported by others constitute valuable ethnographic communication, but typically need further validation.” (1990: 58)

In light of this definition and having considered all previous studies in this field, and taking into account not only the semantic and syntactic levels but also the communicative purposes of the text and perspective beyond the sentence-level basis, Swales created a genre analysis model which breaks down the text in order to identify the communicative purposes through what he called “moves” and “steps”.

Finally, the main approaches to genre analysis will now be presented here in order to obtain an overview of the past, present and future of this evolving concept. It can be stated that the two main approaches dominating genre analysis are those based on the work of systemic functional linguists such as Halliday (1985), Hasan
(1984, 1989), Martin (1989, 1992), Ventola (1987), Christie (1989) and Kress (1989, 1993) and those based on the work of John Swales (1981, 1984, 1990) and Bhatia. The first approach is based on a socio-semiotic perspective of language description (Halliday and Hasan, 1989), whereas the second is perhaps more eclectic (Paltridge, 1995: 503-511); however, the contributions of Vijay Bhatia and Inger Lassen to the analysis of technical manuals will be of major relevance to this study.

I.4.3. The Model of Genre Analysis Proposed by Vijay Bhatia and its Application to Specialised Discourses

According to Bhatia, genre analysis requires inputs from a variety of disciplines to interpret, describe and explain the rationale underlying various professional and academic genres (Bhatia, 1993:13). Therefore, it is appropriate to start with Swales’ definition of genre analysis, which formed the cornerstone of Bhatia’s work:

“Genre is a recognisable communicative event characterised by a set of communicative purpose(s) identified and mutually understood by the members of the professional or academic community in which it regularly occurs. Most often it is highly structured and conventionalised with constraints on allowable contributions in terms of their intent, positioning, form and functional value. These constraints, however, are often exploited by the expert members of the discourse community to achieve private intentions within the framework of socially recognised purpose(s)”. (Swales, 1981b; 1985 and 1990)

Depending on the purpose of study in genre analysis, Bhatia establishes different kinds of orientation in the functional variation of language in use (Bhatia, 1993: 16 et seq.):

- **Linguistics and genre analysis**: regarded as register or stylistic analysis.
- **Sociology and genre analysis**: regarded as how a genre defines, organises and
communicates social reality.

- **Psychology and genre analysis**: regarded as tactical aspects of genre construction, appropriately called “strategies”. Here, Bhatia distinguishes between non-discriminative and discriminative strategies: non-discriminative, in the sense that they do not change the essential communicative purpose of the genre, and discriminative strategies tend to vary the nature of the genre significantly, often introducing new or additional considerations in the communicative purpose of the text. This variation sometimes helps one to distinguish genres from their sub-genres (Bhatia, 1993: 20-21).

Swales’ move-structure model greatly influenced Bhatia’s future works. Consequently, in Bhatia’s view the structural interpretation of the text-genre in this move shapes and highlights the cognitive aspects of language organisation. As a result, the communicative purpose(s) of a text are reflected in its move-structure, and this move-structure represents the socio-cognitive patterns that members of a professional community use to construct and interpret discourses specific to their professional cultures. Through this development of discourse analysis and in its attempt to describe language in use, discourse structures are related to the communicative purposes the genres served, and this is the point when analysts start accepting context as an important aspect for analysis in the study of genres. It was during this phase that Bhatia extended the study of move structures, firstly and most significantly, by applying it more generally to a number of professional genres, and secondly, by extending the roles of context to bring in a number of other factors, particularly socio-cognitive ones (Bhatia, 1993:10). Genre analysis now becomes a way of analysing the real world of discourse, which was complex, dynamic and continually developing, where social, cultural factors and consequently context takes an important role. As stated by Sarangi and Slembrouck (1994), discourse is used as a powerful instrument of social control, to establish identities, to communicate ideology, or to influence and maintain social processes, social structures and social relations.
Nevertheless, despite the developments in discourse, there is a need for broader description of language in use in order to offer a grounded description of language use in educational, academic or professional settings, and the need to answer the question: “why does a particular use of language take the shape it does?”

Before trying to answer this question, in this study it is necessary to have a look at what genre theory means for Bhatia (1993: 23):

“Genre essentially refers to language use in a conventionalised communicative setting, in order to give expression to a specific set of communicative goals of a disciplinary or social institution, which give rise to stable structural forms by imposing constraints on the use of lexico-grammatical as well as discursal resources.”

Another important aspect of genre theory is that genres are not static as Berkenkotter and Huckin (1995: 6) point out: “…genres are inherently dynamic rhetorical structures that can be manipulated according to conditions of use, and that genre knowledge is therefore best conceptualised as a form of situated cognition, embedded in disciplinary cultures.”

There is great emphasis on the propensity for innovation of genres, trying to contend with the real world of discourse which is complex, dynamic and constantly developing. Therefore, Bhatia (2004: 26) tries through genre(s) and genre analysis to answer and to tackle linguistically the following questions:

“How to handle a world which is not entirely systematic, predictable and disciplined? How do these complexities create problems for genre theory and how do we use genre theory to account for the realities of the world of discourse? And why do members of a specific community shape genres the way they do?”
I.5. **Key Concepts in Bhatia: Integrity, Systems of Genres and Genre Colonies**

Bhatia starts by pointing out that genres have their own integrity, which is what characterises every genre within a specific domain: “…genres are often identified on the basis of their integrity, which is a reflection of their conventionalised characteristics, they are far from static.” (1993: 29)

This generic integrity in Bhatia is an important aspect of genres that makes them recognisable and sufficiently standardised, based on a set of mutually accessible conventions which most members of a professional, academic or institutional organisation share (Bhatia, 1993: 115). This generic character is more easily accessible to the established members of the professional community than to those who have a peripheral involvement in the affairs of the professional community in question (Swales, 1990).

Notwithstanding that conception of integrity, Bhatia recognises propensity for innovation and variation of genres: although it is true that most genres have an identifiable “integrity” of their own (Bhatia, 1993, 1994), it may often be seen as unstable, even “contested” sometimes (Candlin and Plum, 1999; Sarangi and Roberts, 1999). Genres in the real world are often seen in relation to other genres with a certain degree of overlapping or even conflict on some occasions (Bhatia 1998a; Bhatia, 2004: 29). In this respect, Bhatia recognises and introduces the capacity of genres for variation, making it possible to create not just pure, but also, hybrid and mixed genres, later referred to as “interdiscursivity”.

Taking this further, Bhatia underpins the concepts of “genre set” and “systems of genres”, especially applied to professional domains. Therefore, these two concepts must be examined. Devitt (1991) proposes the notion of “genre set” to refer to a range of text genres that a particular professional group produces in the course of
their daily routine. The concept of “genre set” seems to include one side of the professional practice, as Bazerman (1994: 98-9) points out:

“The genre set only represents the work of one side of a multiple person interaction. That is, the tax accountants’ letters usually refer to the tax code, the rulings of the tax department in this case, the client’s information and interests, and these references are usually presented in highly anticipated ways appropriate to the genre of the letter, but the genre set is only the tax accountant’s participations, as inter textually linked to the participations of the parties.”

Bhatia (2004: 54) agreed with Bazerman when he proposed the concept of “systems of genres”, which refers to all the interrelated genres that interact in specific settings:

“The system of genres would be the full set of genres that instantiate the participation of all the parties – that is the full file of letters from and to the client, from and to the government, from and to the accountant. This would be the full interaction, the full event, the set of social relations as it has been enacted. It embodies the full history of speech events as inter textual occurrences, but attending to the way that all the intertext is instantiated in generic from establishing the current act in relation to prior acts.” (Bazerman, 1994: 97)

Nonetheless, according to Bhatia:

“It is often necessary and more useful to go beyond a system of genres to consider a more general category of genres which are outside the boundaries of a particular professional activity... all of these professional activities taken together may constitute the disciplinary domain of [...] (1993: 119) [...] all of which constitute a set of domain-specific disciplinary genres.” (2004: 54)

Furthermore, as stated by Bhatia these domain-specific genres (2004: 55):

“constitute three rather different categories, each incorporating a limited set of genres
representing an increasing range and level of discursive practices. ‘Genre set’ incorporates a class of typical professional genres that a particular professional engages in as part of his or her routine professional activity (Devitt 1991). ‘Genre system’ represents a complete set of discursive forms that are invoked by all the participants involved in a professional activity. ‘Disciplinary genres’ extend such a system to include all those discursive forms that are invoked in all professional practices associated with a particular disciplinary or professional domain.”

Another key concept to understanding genre analysis in a Bhatian perspective is “genre colonies”. Bhatia (1993: 57-59) states that a genre colony:

“represents a grouping of closely related genres, which to a large extent share their individual communicative purposes, although most of them will be different in a number of other respects...genre colonies represent groupings of closely related genres serving similar broad communicative purposes, although not necessarily all cases where they serve more than one. In addition they may not share a number of other features of context...genre colony is a function of the versatility of the genre.”

Bhatia also defines “genre colonies” as follows:

“Like the stars in the galaxy, the genres exist in colonies (Bhatia, 1995, 1997a), and then colonies have systematic relationships with each other as one may find in the whole galaxy of the universe....A constellation of closely related and overlapping genres, sometimes within, but often across, discourse communities.” (2002: 3-19)

This concept serves as a way of classifying texts and, therefore, sub-types of genres such as technical manuals within the frame of technical communication. Bhatia reasserts the overlapping and hybrid nature of modern genres, particularly in business contexts where new communicative needs are emerging almost every day and genres must respond to these new communicative needs through mixing, changing or overlapping the existing genres.

It is at this point where Bhatia introduces the concept of “generic values” to refer
to a combination of rhetorical acts used to achieve certain communicative purposes; these could also be understood as “strategies”. They do not seem to have any specific textual sequencing or cognitive structuring in terms of “moves” (Bhatia, 2004: 60). We may better understand these theoretical concepts by representing the versatility of “instructional genres” in the following diagram, and understand the technical documents to be analysed herein, by taking into account Bhatia’s move-structure model, and consequently, Lassen’s classification of technical documents (Lassen, 1998: 122):

(Adapted from Bhatia, 2004: 59)

Consequently, due to the versatility, capacity for innovation and development of genres (and the importance of context), Bhatia proposes adopting a multi
perspective and multidimensional analytical framework (Bhatia, 2004), which integrates the analysis of discursive and professional or disciplinary practices in the context of specific professional or disciplinary cultures. Nevertheless, it is necessary to highlight the importance of “interdiscursivity”, which is an important function of appropriation of text-external generic resources across professional genres and practices (Bhatia, 2008: 161-174), hence the importance of “interdiscursivity” in the analysis of professional discourses. This phenomenon has arisen as a direct result of the increasing number of different texts that participate in many different but interrelated fields and which are all needed to fulfil the communicative purposes of the setting in question.

Regarding perspectives on discourse, Bhatia considers three:

- **The textual perspective**: this refers to the surface level.
- **The socio-cognitive perspective**: this incorporates context in addition to text.
- **The socio-critical perspective**: where context and social context assume considerable relevance.

These three perspectives are not exclusive but complementary to each other: for that reason Bhatia proposes a multidisciplinary and multidimensional approach which takes into consideration these three aspects. Accordingly, it can be said that this approach, considering these perspectives, analyses not only text internally but also externally. Text for Bhatia does not just depend on semantically accurate interpretations, but also on appropriate socio-pragmatic interpretations, hence the importance of text-external factors, especially the conventions that make a particular genre possible and also the specific culture that motivates these practices.

Moreover, Bhatia sees genre analysis as versatile and dynamic in nature, essentially explanatory rather than purely descriptive, narrow in focus, but broad in vision, and having a natural propensity for innovation and exploitation (Bhatia,
Genre analysis serves as a tool for investigating instances of conventionalised or institutionalised textual artefacts in the context of specific institutional and disciplinary practices, for example, in the case of instructional manuals of artificial or natural stone production, in order to understand how the members of this community, for instance engineers, construct, interpret and use these genres to achieve their community goals (installing Silestone products correctly without any subsequent installation or maintenance problems), and also as a tool for understanding why these engineers or specialists write these manuals the way they do (Bhatia, 2002, 2004, 2008). It is also very important for genre analysis to bear in mind four contributory factors proposed by Bhatia (Bhatia, 1999a): purposes, products, practices and players. In this study, these contributors would be: the correct installation, product (artificial natural stone, electrical devices), technical practice and engineers or assembly specialists.

Finally, we must try to provide an answer to Swales’ question “why do members of a specific discourse community use and shape genres the way they do?” The answer could attribute importance to the propensity for innovation and to the versatility of genres. In consequence, it could be concluded that: “Genre analysis is pattern seeking rather than pattern imposing” (Hart, 1986: 280), a statement which also reinforces the idea of interdiscursivity due to hybrid and mixed genres. Bhatia also predicts how the integrity of genres will be affected by the increasingly developing disciplines which produce result in response to the demanding needs of society.

Swales’ first four-move cognitive structure in article introductions (M1- Establishing the research field; M2 - Summarising previous research, M3 - Preparing for present research, M4 - Introducing the present research) serves as a pattern for Bhatia’s future works.

In the area of EOP, Bhatia (1993) has shown that techniques of genre analysis
developed originally for the study of academic texts, can be applied to other kinds of texts such as business letters or legal documents.

When Bhatia was analysing the structure of legal cases, he found that they displayed a typical four-move pattern, similar to the one developed by Swales. This move-structure model is of a similar pattern as used by many other experts, such as, Inger Lassen, who has adapted Bhatia’s four-move model to another completely different area – “technical communication” – where texts follow a similar structure but are different at the same time, as they are part of diverse areas of specialisation. Finally, this study will focus on this point: different areas of specialisation of texts and the specific content determining the communicative purpose(s), and therefore the move and steps where these communicative purpose(s) are reflected.

I.6. Instruction Manuals: General Aspects and Previous Studies

In order to offer an introduction to technical manuals, Peirce’s view of technical communications may facilitate a better understanding of how the manuals work and how they are designed.

According to Peirce (Killingsworth and Gilbertson, 1992: 6), one of the first linguists to offer a theory of signs, “we best understand the meaning of a text when we can project the effects that this text will have upon our actions.”

With regards to manuals: “We read in order to act. We write in order to help someone else to act...the idea of purpose in manuals is best understood if it is connected to the action that will be produced by writing.” (Killingsworth and Gilbertson, 1992: 6).
Therefore, it can be said that the purpose of a manual is to ensure the proper use of a device and to help the reader act in the right way.

Within the field of technical communication, the major genres are: the report, the manual and the proposal. This study will exclusively deal with manuals.

I.6.1. Characteristics of Technical Manuals

It is worth viewing some comments about technical documents in order to comprehend how a manual works within the area of technical communication.

As in real life, human actions take place. The manual, as a text, tells people how to do something in a particular way: it encourages an activity.

In the same way that the prose of the manuals represents ideal actions, the actions performed by the user of the manual are representations of the text. Consequently, if actions are done as the manual suggests, then the actions may be considered an accurate representation of the manual’s text (Killingsworth and Gilbertson, 1992: 14).

Technicians do not read a manual to find the truth, but to perform an action in the right way. Even so, it is necessary to explain technical communication in order to understand technical manuals. Thus, technical communication can be located between highly developed scientific and technological disciplines. Furthermore, it needs the kind of writing that preserves the connection to the ‘outside world’ for the purposes of selling, advising, or promoting products (Killingsworth and Gilbertson, 1992: 13).

The main purpose of texts in technical communication is to represent a reality and
to be interpreted by knowing readers. Therefore, it may be relevant to highlight how manuals are mentally interpreted. Following Peirce’s theory of signs, “the action of the sign in the world as a continuous interplay of representation and interpretation, interchangeable conversions of mental action to verbal action and verbal action to physical action” (Killingsworth and Gilbertson, 1992: 16). As a result, it can be said from Peirce’s statement that in a manual, verbal action is translated into physical action, like written instructions reflected in actions to be performed, which is the final purpose of a manual: to get something done.

Thus, the purpose of a technical manual is to offer enough information to the audience in order to get the job done, i.e. to substitute the engineer’s verbal instructions with text. Consequently, to make the manual effective, this must be complete and clear enough to substitute the presence of the engineer or specialist. Moreover, it is of great relevance that technicians or installers read the manual in order to perform an action in the right way, not just to be informed.

Next, some definitions of genre by specialists in technical communication will be put forward. On the one hand, according to Killingsworth and Gilbertson (1992: 73): “Genre is more than just a way of distinguishing among types of documents. It’s a way of classifying and predicting types of action by determining the rhetoric of documents more closely associated with those actions.” Furthermore, they (1992: 78) add:

“Genre is in the simplest sense of the word ‘a kind of writing recognised as distinctive by writers and readers’ and in the more complex sense, a set of conventions governing the arrangement, style, and general method of communication. These conventions are shaped by practice and are in constant state of evolution”.

As stated by Bazerman (1988: 8), “though genre emerges out of contexts, it becomes part of the context for future works”. Here, we can appreciate a clear
sign of intertextuality, a term previously discussed, noting the relevance of context for genre analysis. This is a factor that can provoke variability in genres or create different genres.

Furthermore, as the rhetorical theorist Kenneth Burke (1931: 157) suggests, “form depends upon an arousing and fulfilment of desires, usually the desires of a group of readers with particular interpretive habits.” In addition, according to David Dobrin, technical writing is “the writing that accommodates technology to the user” (1989: 54).

After this brief comment on the meaning of genre in the field of technical communication, the three major genres of technical communication will be analysed: the report, the manual and the proposal. As Killingsworth and Gilbertson suggest (1992: 77): “technical communication is action-oriented with three different modes of technical communication: the reportorial mode, the promotional mode and the operational mode”. Manuals therefore belong to the operational mode.

In this study, only the operational mode will be considered, which is the one that refers to the manual and which develops activities by helping the reader to perform an action. It is according to Killingsworth and Gilbertson (1992: 78-79) an appropriate ground for the application of pragmatic semiotics because of its emphasis on practice and outcome.

Furthermore, although manuals are considered to belong to the “operational mode”, it can be said that technical manuals (Silestone, natural stone products and electrical devices) in this respect are a mixture of both modes: the operational and reportorial, because as it will be shown that they have some of the characteristics of the two modes, such as both primary and secondary communicative purposes. Therefore, “to enable performance” is the most dominant communicative purpose
through the texts; “to explain and evaluate” are the secondary purposes in the operational mode and primary in the reportorial; and “to recommend” is secondary purpose in the reportorial mode.

As will be subsequently appreciated, texts in this corpus are not listed as fixed within the operational mode; also they own some aspects of the reportorial, perhaps due to the implicit purposes of promoting and selling. Therefore, it can be stated that Bhatia’s theory on how communicative purposes change genres and create other subgenres is possible, although open to discussion (see section 3 and 4).

It seems relevant to highlight the difference between workers’ and technical experts’ perspectives, since for the first group, the manual is a means of getting a job done. However, for the second, the manual is a representation of the project in mind. As a result, both groups have a common interest – to perform the action as desired by the technical expert in order to enjoy the success of the action. Therefore, as the rhetorical theorist Carolyn Miller (1984) has argued, “genre itself is a form of social action”.

I.6.1.1. Author-Audience Relationship

<table>
<thead>
<tr>
<th>Author</th>
<th>instructs</th>
<th>audience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Task: use of product or system

(Killingsworth and Gilbertson, 1992: 86)

As observed above, the reader or audience is completely dependent upon the author to provide accurate and usable information. In this representation, the
relationship between author and audience is the key factor in differentiating technical genres.

As Robert Hodge and Gunther Kress (1988: 7) have found in their work on social semiotics, genres are: “typical forms of text which link kinds of producer, consumer, topic, medium and occasion and which thereby control the behaviour of producers of such texts, and the expectations of consumers”.

Finally, as W. Skees (1982: 181; 27) advises: “look upon the user manuals as the document which substitutes for your own physical presence, providing everything in the way of guidance and assistance that you, yourself, would provide to the user of the system if you were there”.

In conclusion, a social factor establishes the relationship with the audience; therefore, engineers or specialists determine the social relations through their writing and their way of addressing the audience, but essentially, the main purpose herein is to instruct the audience whether or not they have previous knowledge of the field. Consequently, the purpose of “instruction” in manuals will determine the action to be performed.

I.6.1.2. The Factor of Time

The element of ‘time’ is very important in the design of manuals since they must help the user with the problem or the action at hand, so in this case the manual would be a present-oriented task making actions come alive, giving text a sense of present reality. In addition, “to involve readers” means according to Killingsworth and Gilbertson (1992: 95): “to obliterate their sense of real time and enwrap them in the ‘eternal present’ of the discursive experience”.

Moreover, manuals must create the impression of a profoundly present reality to make the audience more involved in the action performance. In some way, technical manuals are designed to help readers solve problems in the present.

There are different ways to approach the design of technical manuals. If “the story” is about the product’s development, it would be written in the past, and therefore reader/user cannot be involved. If the manual’s “story” is about the product’s use in sequentially presented and explained steps, it will happen in the present, therefore it involves the reader directly (Killingsworth and Gilbertson, 1992: 101). According to Morris Dean, one should “make the reader the hero of your ‘how to’ story” (Killingsworth and Gilbertson, 1992: 101).

I.6.1.3. Grammar and Organisation

Manuals are usually addressed in imperative, and sometimes addressed to “you” (the reader), so that present tenses dominate the text.

In accordance with organisation, as previously stated, technical manuals are task-orientated. Each section in the manual is a unique task (a single operation), as will be seen later in the different steps of the technical manuals studied, e.g. warnings, maintenance, etc. The organisation of the manuals will depend upon the order or relevance of use. Titles and headings reveal the task at hand. Nevertheless, whilst reflecting all these ideas, writers must be careful to move from the simplest to the most complex, to allow the more effective and immediate performance of a given task (Killingsworth and Gilbertson, 1992: 101).

To sum up, manuals deal with events unfolding in the present, verbs in the active voice, and therefore, shifts in the verb tenses would indicate a change in the temporal context of the event in question; the dominant verb tense is the
imperative and the recommended grammar is the simplest and the least open to transformation.

I.6.1.4. Communities of Discourse

It is also relevant to refer here to discourse communities because writing is influenced and limited by the culture that the language represents and perpetuates.

According to James Porter (1986: 34-47): “a discourse community is a group of individuals bound by a common interest who communicate through approved channels and whose discourse is regulated”.

James Porter (1986: 39) also suggests that “each group is constrained by a set of rules governing appropriateness to which members are obligated to adhere; these rules may be “more or less apparent, more or less institutionalised, more or less specific to each community””.

Accordingly, in the technical documents, the communities involved would be engineers, marketing experts and workers or technical specialists in charge of installations in a specific company.

These manuals will be located between the fields of engineering and post-sale services. The field of action will be industry and the marketplace.

I.6.1.5. Instruction Manuals: Syntactic, Semantic, Lexical and Discursive Characteristics

There is no such thing as a standard model of written expression in manuals;
however, some suggestions on style can be shown below, not meaning that they are the correct forms, but the most frequently used style in this kind of specialised writing.

It is essential to mention that the factors that make one or other of the versions—in this case versions of technical manuals—more effective as written communication are not cases of accuracy or clarity of technical content, nor are they matters of grammar, but rather of the relationship between the writer and the reader(s) and with the context in which the exchange takes place (Kirkman, 1992). However, stylistic aspects such as syntactic, semantic, lexical or discursive elements give shape not only to writing, but also to context, and it is due to that fact that there is the need to analyse these aspects. Here, we have some suggestions given by John Kirkman (1992: 3) regarding some language resources:

sentences:	short vs long
	simple vs complex
vocabulary:	short vs long
	ordinary vs grandiose
	familiar vs unfamiliar
	non-technical vs technical
	concrete vs abstract
	phrasing: normal, comfortable idiomatic expression vs special, stiff
	scientific idioms
	direct, incisive phrasing vs roundabout, verbose phrasing
verb forms:	active vs passive
	personal vs impersonal
paragraphing:	use vs non-use
punctuation:	careful use vs casual, random use

- **Syntactic characteristics:**
 In this section, the most relevant syntactic aspects in technical manuals will be stated.
Firstly, it is important to mention the use of inanimate subjects: “hacen posible ocultar la participación del agente con su carga de subjetividad para dejar paso a los objetos” (Galán and Montero, 2002: 75). Secondly, it is also worth noting the use of impersonal tenses in order to omit the creator of the process or the agent who carries out such a performance.

On the one hand, there is a tendency for other verb tenses that characterise this type of writing such as the impersonal verb forms e.g. infinitives, gerunds or participles, which serve as a way to hide agent participation and give way to object; on the other hand, the use of imperative forms is also apparent. These also serve the same purpose of hiding the creator’s participation and leaving full participation to object. In addition, the use of passives in the majority of manuals may be mentioned, but imperative being the dominant tense. Moreover, another linguistic resource used to highlight the importance of the object in technical manuals is “personification”, which is intended to stress the object and thereby omitting the agent of the action (Norman, 1999: 75). The combination of these impersonal aspects are used to reflect “neutrality”, “objectivity”, “economy”, “clarity” and “precision” which characterise this kind of specialised language (Martínez Linares, 2007: 14).

Turning to syntax, the simple style and short structures for this kind of writing are widely recognised; nonetheless, this is not applicable to all texts since they can change depending on tendency or style. This simple syntax is sometimes characterised by purpose expressions such as: in order to, to, so as to; so that + subject + modal verb + infinitive; for + direct object + to + infinitive (Alcaráz, 2000: 36). Furthermore, nominal expressions ending in “–ing” are typical of this kind of writing because they provide text with simplicity, but also precision.
Lexical characteristics:

In accordance with the lexis in technical manuals, unlike syntax, technical manuals are characterised by “una alta proporción de sustantivos” (Soty and Zenteno, 2004: 275). Likewise, Alcaraz Varó (2000: 30) points out the simplicity of sentence structure in honour of conceptual precision as being a significant aspect among the syntactic preferences of professional English. As a result, there is a great variety of lexical density among the different specialised texts, in the case of technical manuals everything depends on the field of specialisation. If we talk about technical manuals, the lexical density would be high; if we deal with scientific texts it will be probably higher, but if we talk about tourist texts, the density will consequently be lower.

Moreover, vocabulary is also very noticeable in technical communication since it represents the reality of such text. Due to this factor, all changes will mainly affect lexis. Therefore, lexical composition is another phenomenon employed to achieve terminological precision (Gómez González-Jover, 2007: 37). As stated by Trimble (1985: 133), vocabulary of science and technology can be grouped into four categories concerning their level of composition:

a. **Simple** (cable shore; push bottom; troubleshooting)

b. **Compound** (solid-state electronics; cable television, penetration rate)

c. **Complex** (3-phase, 4-pole, brush less DC motor speed)

d. **Highly complex** (heterogeneous graphite moderated natural uranium fuelled nuclear reactor)

The use of acronyms or lexical mutilation is also important in order to leave terms shorter, and join, for instance, two lexical pieces, such as in hi-tech (Gómez González-Jover, 2007: 38). Finally, it is particularly relevant to highlight the high number of adjectives and adverbs and the importance of the object and not the agent.
To conclude, the most relevant aspects of technical writing can be summarised as follows (Alcaraz Varó, 2000: 61-72): a high number of adjectives and adverbs; syntactic constructions which tend to hide agents such as passive construction, nominalisation, and impersonal forms; regular use of simple verb tenses, past simple, present perfect; hedging, in order to demonstrate the stress of information which facilitates the use of a non-precise language with which scientific and technological findings are showed.

In line with vocabulary of science and technology, findings highlight that there is a tendency to use referential and categorial vocabulary in order to make reference to entities of reality (engine) or to arrange reality into categories, taxonomies, etc. (“lead to”). This vocabulary can be technical, semi-technical or general [own translation from “lenguaje técnico, semi-técnico o general”] (Fuertes Olivera, 2007: 206).

I.6.1.6. Recommendations for Writing Instructions

Most operating instructions are written, so that they can reflect a process, procedure, or how a piece of equipment must operate accurately and economically.

Accordingly, instructions must be (Kirkman, 1992: 93-98):
- Accurate
- Comprehensible (instructions must be manageable, not too overloaded with information, not blurred by explanation and description)
- Adequate (enough information to permit operation)
- In sequence (steps in the proper order)
- Safe
- Acceptable (the tone must help gain the response desired)
In addition, there are also problems with the writing style of some instructions. Firstly, a common weakness of instructions is the inadequacy of information, especially, omission of information about what to do if things are not as expected. Therefore, the adequacy of instructions would depend greatly on the expertise and previous training of users. Secondly, definitions should be given at the start of each section or document. Moreover, it is very important that each word or phrase in an instruction sheet be considered in relation to the readers’ background knowledge in order for them to understand the instructions properly. Thirdly, and according to Kirkman (1992), in order to achieve clarity and acceptability in this sort of specialised writing, instructions must be written in the imperative. Accordingly, on the one hand, it is easier to write instructions as a sequence of steps, each beginning with the imperative form of a functional verb (raise, lift, turn, switch, ensure, connect). On the other hand, occasionally, “siting or locating phrases” such as “at panel B, switch…; If the reactor is partly full, connect…” usually precede the verb.

Finally, warnings in instructions must always be placed before any dangerous steps. Warnings, according to Kirkman (1992) must be short, clear, separate and not buried in the text.

I.7. A New Proposal

In the first section, an overview of the evolution of the main linguistics theories relating to language and communication was carried out in order to provide this study with a complete linguistic framework which may apply such theories and previous studies to the technical manuals examined here.

All these characteristics of instruction and technical manuals will help with the reading and understanding of the genre analysis section (section 3), where the
previous theoretical knowledge of genre analysis will be put into practice by applying the appropriate theories and models of Swales, Bhatia and the relevance of Lassen’s perspective. Their contributions will be verified in the following chapters.
II.1. Objectives

1. The primary aim of this study is to find relevant information regarding how moves and steps are developed in technical texts from different areas of specialisation, and this is achieved by taking Lassen’s model for technical manuals as the main reference point. Texts are chosen from different companies in order to highlight possible similarities, changes and variations in style and structure so that it is possible to come to a better understanding of how communicative purposes are shaped through moves.

2. The second goal of this research work is to use the results obtained through the analyses to ascertain relevant differences and to decide on possible changes and variations which might become necessary to adapt the genre model to the communicative purposes of current and evolving technical texts. In the Conclusions section, a possible new perspective on the application of genre analysis will be suggested, which may help the development of potential teaching ideas for the field of technical communication. Furthermore, this study will endeavour to present some helpful strategies not only concerning analysis but also the way texts are designed, intended to help professionals to communicate effectively so that they are aware of the importance of accessibility and acceptability in technical texts (Lassen, 2003).
II.2. **Hypotheses and Basic Assumptions**

In this section, a number of research questions and hypotheses vindicated by Bhatia and Lassen will be the cornerstone of this study. New assumptions and proposals are included to serve as a more specific contribution.

ASSUMPTION 1: The technical texts under scrutiny belong to the field of technical communication. Technical texts are classified and identified according to the context in which they are to be used.

HYPOTHESIS 1: Depending on the communicative purposes and the participants or members of these technical manuals (parent genre), different technical sub-genres may be categorised in line with Lassen’s classification of technical texts.

HYPOTHESIS 2: The selection of different technical manuals has been carried out by determining the genre of technical communication, so that technical texts can be distinguished from commercial texts or from any other specialised text. Bearing in mind that all the technical texts studied belong to the parent genre ‘technical manuals’, they all possess a common communicative structure, style and design, although they do not have identical communicative purposes since they are not identical genres. However, through a selection of diverse sub-genres of technical manuals, it is possible to find differences in moves, steps and sub-steps.

The author-audience relationship is also a differentiating aspect of technical sub-genres; moreover, this relationship determines the degree of difficulty in understanding technical texts.

Consequently, following Bhatia, communicative purposes are the guidelines for texts which are represented through moves. Therefore, moves will contribute to structure texts and every technical sub-genre will require specific moves and steps.
II.2.1. Fundamentals

In order to understand why in certain contexts specialised texts are developed, we must consider Swales’ statement (1990: 10):

“It is communicative purpose that drives the language activities of the discourse community; it is communicative purpose that is the prototypical criterion for genre identity, and it is communicative purpose that operates as the primary determinant of task”.

Therefore, every community will demand a specific genre, where it is not solely content and participants which exert influence on the creation of specialised texts, but also other factors such as: the context in which texts are created and how they are handled by the audience, linguistic structures, format and communicative structure. The latter question is the aim of this research, since it deals with genre analysis. Texts can be identified and classified, therefore, according to these factors.

Technical texts in this study have been organised in accordance with Lassen’s classification (2003) for technical manuals, being differentiated and classified accordingly. As this classification has been compared with other samples in previous studies, it can be stated that Lassen’s classification for technical manuals and sub-genres is generally accurate.

Following Swales’ and Bhatia’s theories, communicative purposes determine the genre and, consequently, they are performed through moves. Therefore every technical text will involve a number of moves, depending on the communicative purposes developed (see Discussion section).

Audience and context establish the degree of understanding of texts, for instance, in technical manuals where the intended reader is the general public, the language required will not be as specific as in texts addressed to engineers, where terminology and explanations will be more precise.
Bhatia assumes that moves shape texts. Lassen applies this same idea to her model for genre analysis, which is the one that has been used as the pattern or scheme to carry out this present analysis. Therefore, the aim of this contribution has been to adapt this model to the communicative purposes encountered in texts and convert them into moves. Through this process, different moves, steps and sub-steps have been created in order to depict as clearly as possible how technical manuals are constructed by means of communicative ideas (See Section 3.2 and 3.3).

II.3. Theories and Facts to be Demonstrated

As previously mentioned, this study has taken as its rationale, on the one hand, Swales’ and Bhatia’s principle that communicative purposes shape texts. On the other hand, Lassen suggests a genre model sufficiently adapted to fulfill the communicative needs of current technical texts. However, as texts greatly vary in diverse technical contexts, even within the same field, genre models should not be static but rather more flexible to show the real communicative structure of texts.

In the first section or theoretical background, different models of genre analysis for academic, commercial and legal documents were displayed in order to see the evolution of different genre patterns. It is also suggested that genre models for different areas of specialisation should be created to better communicate ideas and purposes. This linguistic device might help increase the degree of accessibility and acceptability of texts to different specialised audiences. Finally, the fact of being aware of the importance of genres would imply successful communication, particularly in specialised settings.
Part III

GENRE ANALYSIS OF SILESTONE TECHNICAL MANUALS

Different move-structures can be found in the contributions to the field of genre studies, especially in genre analysis. As shown below, a wide-range of move-structure models, applied to different textual areas, such as research articles, academic instructions, legal cases, commercial documents, reports or technical manuals are displayed to show how texts are organized. Furthermore, one of the aims of this research work is to show how the respective technical documents herein are written and structured according to previous studies, always with reference to the most relevant authors in this field, mainly Swales, Bhatia and Lassen.

According to Swales (1990) genre can be interpreted as: “a recognizable communicative event characterized by a set of communicative purposes, identified and mutually understood by the members of the professional or academic community in which it regularly occurs”. Using Swales definition of genre analysis as his guideline, Bhatia (1993) draws attention to the concept of communicative purpose, suggesting that it is this concept, sustained by move-structure that determines the genre. For Bhatia (1993), the communicative purpose of a text is genre discriminatory as some change in the move-structure may create sub-genres. But, while Swales created another level where the text is organized into steps, Bhatia did not include this level in his model for genre analysis. Instead, he gives priority to analysing the communicative purpose(s), indicating that any change in the communicative purpose is likely to give us a different genre.
Swales (1981b) proposes a four-move cognitive structure for academic research article introductions (Bhatia, 1993: 30):

<table>
<thead>
<tr>
<th>Move 1: Establishing the research field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move 2: Summarizing previous research</td>
</tr>
<tr>
<td>Move 3: Preparing for present research</td>
</tr>
<tr>
<td>Move 4: Introducing the present research</td>
</tr>
</tbody>
</table>

The communicative purposes of the article introduction are accomplished through four rhetorical moves, which gives this genre its typical cognitive structure (Swales, 1990). Consequently, as “move” serves a typical communicative intention in order to perform these communicative intentions, rhetorical strategies are used by the writer. Later, Swales developed what might be considered a more complete move-structure model, with steps in article introductions, taking into consideration the problem-solution model of Article introduction by Zappen (Swales, 1999: 139):

- Goal
- Current capacity
- Problem
- Solution
- Criteria of Evaluation

According to this scheme, Swales takes the Zappen model as reference to his previous genre analysis model of four-move structure and embraces the first two steps in Move 1 (Swales, 1990: 141):
Move 1: Establishing a territory (M1. Establishing the research field)

S1 Claiming centrality and/or
S2 Making topic generalizations and/or
S3 Reviewing items of previous research (M2. Summarising previous research)

Move 2: Establishing a niche

Step 1A Counter-claiming /or
Step 1B Indicating a Gap /or
Step 1C Question-raising /or
Step 1D Continuing a tradition

Move 3: Occupying the niche

Step 1A Outlining purposes /or
Step 1B Announcing present research
Step 2 Announcing principal findings
Step 3 Indicating Research Article structure

Bhatia would apply Swales first move-structure model together with a more complete second model with steps as the basis to his work. In doing so, it can be seen that not all genres belong to a fixed move-structure; this genre structure may change depending upon the communicative purposes developed in the text. As a result, it can be deduced that the move-step-structure of genres may be subject to flexibility.

Swales genre analysis model of moves and steps has served as a basic model in this field of research, which has led many authors to elaborate similar structures for the current communicative needs, especially in the professional language area. Some instances of these structures are mentioned in order to see the evolution of genre analysis’ models:
As early as 1976, Winter developed a move-structure model to be applied in the analysis of technical reports (Bhatia, 1993: 167-168):

- Situation
- Problem
- Response evaluation
- Negative evaluation

Thereafter, the four-move model by Swales should be mentioned and, as it can be observed, both Winter and Swales display four points to follow in the analysis of texts:

<table>
<thead>
<tr>
<th>Move 1: Establishing the research field (Swales)</th>
<th>/Situation (Winter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move 2: Summarizing previous research</td>
<td>/ Problem</td>
</tr>
<tr>
<td>Move 3: Preparing for present research</td>
<td>/ Response evaluation</td>
</tr>
<tr>
<td>Move 4: Introducing the present research</td>
<td>/Negative evaluation</td>
</tr>
</tbody>
</table>

Albeit the fields of study are different, Move 1 and Move 2 can be applied in the analysis of texts of different topics. In Bhatia’s models, it may be noted how Swales’ work has influenced his research, by establishing the model of moves in different areas of study, predominating the four-move model; though depending on the area of study, this structure can vary by adding or removing some moves. At this point, Bhatia recognizes the flexibility of genre analysis, and as stated previously, the capacity for innovation of genres. Some of Bhatia’s models of move-structure are displayed here below:
<table>
<thead>
<tr>
<th>Bhatia’s business letter move-structure</th>
<th>Bhatia’s reports move-structure</th>
<th>Bhatia’s legal case move structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Establishing credentials</td>
<td>1. Presenting the case (actual</td>
<td>1. Identifying the case</td>
</tr>
<tr>
<td>2. Inducing the offer</td>
<td>events)</td>
<td>2. Establishing facts of the case</td>
</tr>
<tr>
<td>i. offering the product or service</td>
<td>2. Offering the argument (discussing the possible alternative worlds)</td>
<td>3. Arguing the case</td>
</tr>
<tr>
<td>ii. essential detailing of the offer</td>
<td>3. Reaching the verdict (writer’s conclusion)</td>
<td>i. Stating history of the case</td>
</tr>
<tr>
<td>iii. indicating value of the offer</td>
<td>4. Recommending action (how the desired world of events can be realized)</td>
<td>ii. Presenting arguments</td>
</tr>
<tr>
<td>3. Offering incentives</td>
<td></td>
<td>iii. Deriving ratio decidendi</td>
</tr>
<tr>
<td>4. Enclosing documents</td>
<td></td>
<td>4. Pronouncing judgement</td>
</tr>
<tr>
<td>5. Soliciting response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Using pressure tactics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Ending politely</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III.1. Inger Lassen’s Model of Genre Analysis in the Field of Technical Communication and her Contribution to Bhatia’s Theory

Taking into consideration all these move-structure models, Inger Lassen is the other important reference for the present analysis in the field of technical communication. Accordingly, she has strongly influenced this contribution on genre analysis application.

First of all, an overview of Lassen’s model for genre analysis will be made by tracing back Bhatia’s previous works in this field. Moreover, some comments will be posed to analyse how she studies the feasibility of applying Bhatia’s model of genre analysis to technical manuals.

To start with, she agrees with moving away from discourse analysis, as a description to discourse analysis as an explanation as suggested by Bhatia (1993),
what may answer the question: “Why is a particular text-genre written the way it is?” (Lassen, 1998: 104).

Having estimated all definitions of “genre”, she finally considers genre as: “the level where the resister variables of field, tenor and mode work together with culture and ideology to achieve textual goals. Genre is therefore seen as a goal-orientated social process moving through stages” (Lassen, 1998: 105). As can be appreciated in the latter statement, although Lassen shares Bhatia’s view on genre, she broadens the concept of genre analysis focusing on the following idea “any major change in the communicative purposes is likely to give us a different genre” (Bhatia, 1993). In Lassen’s terms, changes in the communicative purposes do not create a new genre, but a variation of style within a given genre (Lassen, 1998: 108). It can be then stated that communicative purposes are achieved through “moves”. Bhatia gives great importance to the analysis of moves, which consequently carries on the entire communicative burden to shape the text. Consequently, the communicative purpose(s) of a text also determines the choice of moves. Furthermore, Bhatia finds some tactical aspects of genre construction that he (1993: 17) refers to as “strategies”. Strategies can be “discriminatory” or “non-discriminatory”. Non-discriminatory do not seem to change the communicative purpose of the genre, whereas discriminatory strategies do (Bhatia, 1993). Therefore, moves are discriminatory elements in genre analysis, and once a move has been added or removed we have variation in the communicative purpose (Lassen, 1998: 109).

Despite the different views on genre analysis, Lassen focuses on the contributions of Martin, Swales and Bhatia. These linguists in some way agree that genre is a goal-orientated social process moving through stages (Lassen, 1998). However, she is more inclined towards Systemic Functional Linguistics, especially towards Martin’s view on genre analysis.

On the basis of Martin’s work on genre theory and some of Eggins’ ideas (1994: 36), Lassen suggests a four-step approach for the analysis of technical manuals
(She adds a fourth step) (Lassen, 2003: 72). This will help to understand her move-step model as follows:

- The logic-semantic relations between stages
- The schematic structure understood as the staged and goal-orientated organization of the text
- The linguistic realizations of each stage
- The communicative purpose(s)

Following Martin (1997: 16), this first approach is to establish the nature of the relationships between different text parts in a technical manual, which have to be understood by the user. According to Lassen (2003: 73):

“a technical manual may be reduced to a single clause complex in which the individual clauses are related to one another through a number of logic-semantic relaters, which have been made explicit in the text, but which are always implicit in the manuals. By deducing their meaning, it becomes possible to approach the manuals with an expectation that the genre progresses through stages according to a pattern based on result/purpose, condition/cause, reason and contradiction”.

As stated by Eggins (1994: 41), and thanks to Hasan’s previous contribution (1985), the second step “stages” is intended to:

“show how the manuals move through stages, each stage having a communicative purpose in terms of the overall goal of the macro-genre, and an analysis will show each stage to combine a number of linguistic realizations each of them with its own function in the communicative event” (Lassen, 2003: 73).

The third step dealing with linguistic realization of stages shows how in English technical manuals, the dominant linguistic patterns in the first stage (move 1) combine evaluation, definition, description, specification, recommendation and instruction. All of these linguistic realizations\(^1\) are characterized by different

\(^1\) Analysis of linguistic realizations will be done superficially under the present study as the main concern herein is move-step behavior.
semantic and grammatical features such as the use of modal verbs, mood or tense. The second stage (or move 2, see Lassen’s genre analysis model below) involves action, carried out through the imperative mood. The third stage (move 3) - where problems are anticipated and solved- it is broken down into problem, cause and corrective action. The linguistic realizations herein involved will include elliptical clauses using the simple present for the problem, the present perfect using finished-result verbs for the cause and the imperative mood for the corrective action to be done. The fourth stage “Continuing Contact”, which is a non-obligatory move, may include specifications on how and where to obtain spare parts and recommendations on whom to contact if things go wrong (Lassen, 2003: 74). Although her pattern is considered as the model to follow in this analysis, her structure and theory will be questioned if suitable for the technical manuals here studied.

Bearing in mind Bhatia’s theory, which supports that the communicative purpose(s) shapes the text and therefore text structure in terms of moves, Lassen highlights the importance of the communicative purpose in technical manuals, according to her “to ensure correct use of a given product with the purpose of safeguarding the reputation of a firm” (Lassen, 2003: 74). In addition, she concludes that “effective technical manuals contribute to the survival of the manufacturer by ensuring smooth co-operation with customers” (Lassen, 2003: 74). However, all the communicative purposes may be achieved through well-written and accessible manuals that offer the user enough assistance to be able to perform an action in the right way, and make the user feel confident when facing the text.
She identifies the following communicative purposes which will be taken as a point of reference in the documents:

<table>
<thead>
<tr>
<th>Primary Purposes</th>
<th>Secondary Purposes (purposes assisting the sender in reaching the overall goals of instructing, hedging and selling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To instruct</td>
<td>To inform</td>
</tr>
<tr>
<td>To hedge</td>
<td>To describe</td>
</tr>
<tr>
<td>To sell</td>
<td>To explain</td>
</tr>
<tr>
<td></td>
<td>To specify</td>
</tr>
</tbody>
</table>

(See Lassen, 1998: 111)

These communicative purposes may or may not be present in all technical manuals, but are the more dominant ones according to previous research.

Accordingly, linguistic realizations (which mainly involve a register analysis) together with how stages are connected in the text, and the consideration of communicative purposes which are to be reflected in each of the stages of a technical manual, bring us closer to an answer of the following questions: “why is a text written the way it is?” or “Why is a text shaped the way it is?” or even “Why do the members of a professional community design a text the way they do?”

In an attempt to make a comparison between Bhatia and Lassen, as has been previously stated; for Bhatia, communicative purposes determine the genre and shape of the move-structure of a text, and these primary purposes may be expected to be reflected in the move-structure, which may or may not be the case. Lassen concludes that Bhatia’s theory of genre analysis, which offers a flexible move-structure model, would be needed. Although the same communicative purposes were identifiable in technical manuals, the organization and structure of the text would change. This is due to the fact that technical manuals tend to be rather static and fixed in terms of their communicative purposes; but at the same time they display a number of more or less obligatory moves and steps such as the
“Introduction” or “Description” which follow a relatively unordered pattern as it will be appreciated in the analyses. Accordingly, these changes in the communicative purpose(s) – and consequently in organization and style – can lead to variation in style giving rise to sub-genres, although they still belong to the same general or parent genre.

For this reason, she developed a model sufficiently flexible to accommodate sub-genres as well as the parent genre of technical manuals. This move-structure for the analysis of technical manuals will be the point of reference herein, which is an adaptation of Bhatia’s four-move-model:

1. Establishing contact; 2. Inducing action; 3. Anticipating and solving problems; 4. Continuing contact.

However, some changes will be undertaken depending on how communicative purposes, organization, structure and style in the texts are performed.

Lassen’s final model for technical manuals contains the following structure (1998: 113-114):

1. Establishing contact and orientating the reader towards the text and the product.
 * Cues
 * Introduction
 – Description
 - Definitions
 - Specifications
 * Warnings
 – Safety
 – Evaluation
2. Inducing action
 * Cues
 * Action (installation, operation, etc.)
 – Result
 – Explanation
3. * Anticipating and solving problems

* Cues

* Action (maintenance, lubrication, correct handling, repair, etc.)

* Result
* Explanation
* Aside

* Warnings

Warranty

* Trouble-shooting

* Problem

* Cause

* Action

4. * Continuing contact

* Cues

* Action (how to order spare parts)

* Reference to dealers

Symbols according to Inger Lassen:

** Obligatory step

* Semi-obligatory step

– Non-obligatory step

Cues: include one or all:

* Headings

– Preview

– Meta text

– Index

– Table of contents.
As it can be appreciated in this example, Lassen takes, on the one hand, Swales’ idea of moves and steps and, on the other hand, Bhatia’s idea of move structure, where each communicative purpose corresponds to a different move in the text.

Finally, this analysis will allow us to distinguish genres and their subsequent sub-genres, and the possibility of expanding upon Lassens’ classification below for technical manuals (Lassen, 1998: 122). A selection of representative technical texts has been carried out following Lassen’s classification, where one can differentiate the parent genre “Technical manual” and its subsequent sub-genres “Instruction manuals; Training manuals; Brochure manuals” (See Lassen, 1998: 122).

1. Technical manuals

<table>
<thead>
<tr>
<th>1.1. Instruction manuals</th>
<th>1.2. Training manuals</th>
<th>1.3. Brochure manuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1. Operator’s manual</td>
<td>1.2.1. Sales manuals</td>
<td>1.3.1. [Lassen leaves this classification in blank]</td>
</tr>
<tr>
<td>1.1.2. Assembly instructions</td>
<td>1.2.2. Designer’s manuals</td>
<td></td>
</tr>
<tr>
<td>1.1.3. Maintenance manuals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.4. Repair manuals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.5. User’s guides</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Lassen’s model for genre analysis, she takes into consideration internal text features, but particularly external text features such as situational context and the imagined reader, which is what Bhatia refers to as “thick description”. However, she does not completely agree with his view on not focussing on the surface level of rhetorical strategies and linguistic features, because the relationship between the surface level of the text and the deeper levels of move-structure and communicative purposes is what enables the analyst to identify the purposes of a text in each level, this forms a new platform in the textual hierarchy (Lassen, 1998: 123). Furthermore, although she sees Bhatia’s model as a successful move-structure model for the analysis of texts, for the purpose of analysing technical
manuals does not appear to be a sufficient device. She finds that it is more appropriate to use Bhatia’s model combined with Swales’ model by including steps under each move, setting up a hierarchy of obligatory, semi-obligatory and optional steps that help to accommodate a great variety of textual organization (Lassen, 1998: 123), thereby not only applicable to the parent genres but also to their sub-genres.

Lassen does not really share the idea that Bhatia’s model can be applied to all types of genres. Therefore, she questions whether Bhatia’s theory is a useful linguistic device to analyse technical texts because of its static and fixed character.

III.2. Methodology for the Genre Analysis of Technical Manuals

In this analysis, a set of technical documents will be examined by applying Lassen’s model. The main technical manuals will relate to a set of *Silestone* technical manuals by Cosentino which deal with artificial natural stone counter tops and their subsequent installation and handling, mainly in kitchens. The users of these manuals must be specialized assembly personnel, although under the supervision of expert engineering and highly-skilled personnel.

Three different types of *Silestone* manuals will be analysed: an instruction manual, a training manual and a brochure manual, in order to see how Lassen’s model can be applied to three different subtypes of technical manuals and to evaluate if this model may be adapted to the different kinds of technical texts that we face every day in technical communication. The analyses of the *Silestone* manuals

Silestone is natural quartz surfaces treated and created to decorate kitchens and bathrooms. *Cosentino*, is the world’s major producer of quartz surfaces, and which has spread worldwide through its distribution network. The concepts of innovation, quality, variety and service have made COSENTINO a leading world Business Group in the natural stone sector, a group of businesses oriented towards modern-day architecture and towards the modern-day world.
manuals will be carried out in detail; however, as the corresponding corpus might be too small to reach a definite conclusion, it has been decided not to limit it here. Consequently, a large number of different technical manuals has been selected – sub-genres- (user manuals, operator manuals, instruction manuals and a brochure manual) to apply Lassen’s model above, and see if in these manuals, despite being developed in different specialized fields, the model can be applied to diverse technical areas; and to find out which kind of improvements and changes can be made.

The second part of the group is based on 17 technical manuals which deal on the one hand with engineering technical devices such as thermometers, valves, gauges, etc, used within the food, petrochemical or energy sector (thermal power stations, power plants, renewable energy plants such as collectors of solar trough), and on the other hand with electronic devices (iPHONE, TV installation, etc.), plus one regarding the installation of a fireplace in natural stone. Users of these engineering technical devices must be highly-skilled personnel such as engineers or highly-skilled technical personnel with vast experience in the field. Others such as signal converters and smd resistors are used in laboratories where electrical engineering works are carried out. These are circuits that can appear in any electronic device. Users of these devices are mainly electronic plate assembly companies, or individual users who assemble electronic plates as a hobby or home-made tasks. Users of these electronic devices must be qualified technical personnel such as technicians or highly-skilled users. Regarding natural stone users, they must be highly-skilled personnel in assembling natural stone products such as fireplaces.

After a first preliminary approach, results from Silestone’s manuals and findings obtained from the second corpus will be compared in tables in order to highlight similarities, differences, possible changes in the genre analysis model and the feasibility of applying Lassen’s model to this corpus. However, some changes in structure will be made in order to adapt this model to the analysed texts, and
therefore, try to offer another complementary version of genre analysis pattern for future studies on the analysis of technical manuals.

In the analysis, it will be thoroughly examined how moves are connected through texts and if they display a number of more or less obligatory moves and steps as it will be observed in the “Move Equivalence Table”, and finally which kind of linguistic realizations are developed. In addition, linguistic realizations will be studied in depth in *Silestone*’s technical manuals, whereas more general comments on linguistic realizations will be performed in the second set of manuals. Furthermore, depending on their move-step and sub-step structure, there will be a discussion about the accessibility and the acceptability of the manuals, and how these texts are interpreted and accepted, depending on their accessibility and acceptability for the discourse community where they usually occur.

III.2.1. Genre Analysis of Silestone Technical Manuals

The texts to be studied are a set of three technical manuals; the first is a *Silestone* Fabrication Manual, the second a *Silestone* Training Manual and the third a Silestone Brochure Manual (See Lassen, 2003: 122).

The *Silestone* Fabrication Manual is composed of three parts. The first part is composed of the Characteristics, the second the Installation Guide and the third Care and Maintenance. Thus, it could be said that the entire manual, as a whole, is separated and divided into three different parts, differentiated by headings which indicate the different sections and the title of the sub-genres within the set. Lassen’s model of technical manuals has been applied to each part – always with reference to Swales’ and Bhatia’s move-concept – in order to examine how moves and steps are developed in this instance of technical communication.

As previously mentioned, Bhatia’s and Lassen’s models will be checked to see if they are suitable for this analysis. To start with, it is particularly relevant to
examine the first move in Bhatia’s model when applied to academic or business documents: **1. Establishing credentials**, which Lassen has adapted and given rise to **1. Establishing contact and orienting the reader towards the text and the product.** Whereas Bhatia does not include any step under this first move, Lassen chooses a variety of steps and sub-steps. Therefore, with regard to the samples under scrutiny, it can be observed that there is a clear introduction in every explanatory section, before moving on to any description or definition. After the application of Bhatia’s and Lassen’s model, it can be noticed how Lassen’s model best suits the technical documents. It might be due to the fact that it is a variation of Bhatia’s previous models and also to the fact that it is also created to address sub-genres such as the ones herein. Furthermore, in her attempt to adapt the genre model, she has added or omitted moves that do not represent the communicative purposes that are generally used in technical manuals. Consequently, it can be said that Lassen’s model could be applied to the majority of the manuals in the corpus. Her model also preserves almost all the main moves of the genre but changes some of the steps under them and creates some new sub-steps. As the main moves remain representative of the primary communicative purposes of the technical manuals, it can be stated that, as happens in legal papers, academic documents or business letters, all of them maintain a similar communicative structure but with some differences in style. This is due to the communicative needs of specialized communities, which decide the form of this genre to fulfil certain communicative purposes. These are based on their business interests or purposes, or it may be due to the marketing strategy followed by different business cultures.

In this research, Bhatia has been taken as the first reference in genre analysis, followed by Lassen’s model as it is the most up-to-date and appropriate for the kind of technical documents analysed. Some variations in move order have been made depending on the type of technical text and their communicative construction. Furthermore, most changes refer to steps and creation of new moves and sub-steps. However, despite variations in move and step order, which might
be due to the fact this study is not dealing with the same type of instruction manuals, as Lassen’s previous works, and consequently, not issued by the same companies, the primary and secondary communicative purposes of texts are sometimes displayed differently, although it should be stated that almost all moves are detected in the entire set of technical manuals. Furthermore, as regards the analysis, some words and expressions from the manuals have been corrected and highlighted by underlying them, as an option to specify the mistakes in technical expression of these specialized texts in the English language.

Part I “Characteristics”

Part 1 in Silestone Fabrication Manual is named “CHARACTERISTICS”. This part could be categorized by first move: Establishing contact and orienting the reader towards the text and the product, made up of six introductions: COMPOSITION, MANUFACTURING PROCESS, OBTAINING RAW MATERIALS, COLOURS, DIMENSIONS and PROPERTIES. This part could not function as a different or isolated manual or as a sub-genre of technical manuals, due to a lack of other moves giving sense to the move-structure in general and, in consequence, fulfil the communicative purposes which give shape to the text:
Graphic Genre Analysis of “Part 1 - Characteristics”

MT¹. ** Establishing contact and orienting the reader towards the text and the product

1.1. COMPOSITION

.RequestMethod
vel
MethodSignature

Introduction:

Silestone is a surface comprised mainly of quartz and a series of inorganic elements whose composition may vary, depending on the color.

* Description:

* Specifications:

Specification1: It is manufactured with a percentage of less than 10% polyester resin.

Specification2: _Silestone_ has exceptional physical and chemical characteristics and is especially attractive and ideal for use in interior decoration.

Specification3: _Silestone_ is an antibacterial product which suppresses the growth of bacteria when in direct contact with the food.

Specification4: It is the only quartz surface in the market that contains an antibacterial additive, providing the product with higher levels of hygiene and safety.

* +Evaluation: This feature of the _Silestone_ product, which is unique and exclusive in the market, makes it ideal for use in homes, health centres, schools, hotels, and restaurants, among others.

* Definitions:

** CHARACTERISTICS, EXTREME HARDNESS AND RESISTANCE TO SCRATCHING.** Quartz, the main component used in manufacturing _Silestone_, is a natural, very hard material that makes the product extremely resistant to scratching.

** COLOUR CONSISTENCY:** _Silestone_ make use of aesthetic and functional solutions, it

¹ Symbols used for analyses and adapted from Lassen’s Model as a new proposal:

** Obligatory step / Sub-steps role:** sub-steps “Specification” as specific

 RequestMethod
vel
RequestMethodSignature

Semi-obligatory step / features/details of information; [Explanation] as

RequestMethod
vel
RequestMethodSignature

Non-obligatory step / “detailed description of action to make more informative”;

RequestMethod
vel
RequestMethodSignature

[aside] as “additional information (contact number, address, etc)

RequestMethod
vel
RequestMethodSignature

semi-obligatory sub-step / #: steps or sub-steps from other moves.

Cues: headings, preview, metatext, index, table of contents, pictures, tables.
creates new color combinations, recognises the latest trends and enhances the kitchen with the natural beauty of the material. The *Silestone* colours remain consistent over time.

EASY OF MAINTENANCE: *Silestone* requires less maintenance than other products in the market, since it has a low degree of porosity and is particularly resistant to stains.

RESISTANCE TO ACIDS: *Silestone* is especially suitable for use as kitchen worktops due to its high resistance to acids and to general products used in the kitchen. Its great resistance to acids also makes it ideal for use in laboratories.

1.2. MANUFACTURING PROCESS

- **Introduction:**
 Our activities include all the necessary processes for converting natural Stone into a product used in design.

- **Description:**
 - **Specifications:**
 - **QUARRIES:** The natural Stone used to manufacture *Silestone* is obtained from our quartz, marble and granite quarries. The raw materials obtained for producing *Silestone* are extracted from the highest-quality international quarries. (+)(…)
 - **MANUFACTURING PROCESS:** The process used for obtaining it is based on the latest vacuum vibrocompression compacting technology. The most important component of *Silestone* is quartz.
 - **Definitions:**
 * *Silestone* is comprised of mortar and silica-based aggregates. The mortar itself is formed by mineral layers mixed with unsaturated polyester resin.
 (Process) **Specification** (where process development can be observed):
 All the control variables are computer tested and levelled by the necessary instruments to ensure the sheets are of the required quality.
 The raw materials are added to a mixer and an even paste is then obtained.
 In addition, additives are used to achieve specific results and pigments to obtain the required colours. (**explanation for + results**)
 They are then sent to the vacuum vibrocompressor through a conveyor belt system where the paste is transformed into compact, even sheets. (…)
 Then the sheets are baked for approximately 30 minutes, during which process the polyester resin chemical reaction takes place.
 They are then cut to the required lengths and submitted to several grinding procedures to give them the shine that is characteristic of each texture.
1.3. OBTAINING OF RAW MATERIALS.

Introduction:

The natural raw materials for making *Silestone* are obtained from the highest-quality international quarries. These quarries are regularly inspected for the purpose of controlling the quality of their facilities and the materials. The quality of our resin is analysed in our laboratories in accordance with the strictest quality standards.

1.4. COLOURS

Cues: colours

1.5. DIMENSIONS.

- **Description:**
 - **Specifications:**
 - Traditionally, the dimensions of the sheets we have always marketed and which we continue to sell are: [304 x 138] cm.
 - Recently, larger sheets are now being marketed: [327x159] cm.
 - This last size is not available in all the colours of the *Silestone*. Please enquire about the required colour. (# how to order)

1.6. PROPERTIES.

Introduction:

The average mechanical and chemical properties of *Silestone* are given in the following tables (on the next page).

- **Reference to dealers (#):** If you would like any further information, please contact your Cosentino Warehouse.
- **Cues:** Tables (how products have been tested, and properties)
- **Warnings:**
 - **Safety:**

Evaluation / QUALITY CONTROL:

Each new sheet is inspected by the Cosentino staff.

It is subjected to inspection by reflection spectrophotometry to obtain the shade and a visual inspection under the appropriate lighting conditions to prevent any flaws in the sheets.

Cue: Process description picture.
According to the French laboratory RATP *Silestone* is included in the M1 classification, meaning it is not flammable.

According to the RATP laboratory, *Silestone* does not give off toxic gases during combustión –Fo classification-.

Cue: table with flammability index of product *Silestone*.

1.7. SILESTONE ANTIBACTERIA

Introduction:

Although *Silestone* surfaces must always be cleaned in the usual way, Microban offers additional hygienic protection between cleaning sessions, giving you greater peace of mind. The *Silestone* worktops now have Microban antibacterial protection, which suppresses the growth of potentially harmful bacteria such as salmonella, e-coli and listeria; these bacteria may contaminate food.

The antibacterial protection is added during the manufacturing process, which means it is present in each quartz particle of every *Silestone* worktop.

* Cue: picture showing *Silestone* antibacteria

Safety:

HYGiene AND PEACE OF MIND. Areas where food is prepared, such as kitchen worktops, are highly susceptible to the growth of bacteria.

EFFICIENCY AND SAFETY (+ EVALUATION). The Microban antibacterial protection is evenly distributed throughout all the material, including the surface. Given that the protection is added during the manufacturing process, it is not eliminated by constant use of the worktop. *This way, your Silestone worktop will be protected during all its useful life (+)*

Whenever bacteria come into contact with the surface, the active Microban ingredients suppress their growth.

Evaluation:

PROMOTION AND + EVALUATION: - *Silestone* is the first and only surface that has this antibacterial protection. This property and its excellent physical and mechanical characteristics, make it the ideal product for places in which a high standard of hygiene is necessary.

The active Microban ingredients protect the whole surface area, even areas that are difficult to reach, such as corners.
CONTINUOUS PROTECTION: The samples in the photo have been tested for the presence of bacteria. The one on the left has been treated with Microban antibacterial protection and the one on the right has not.
* Cues: picture showing the samples tested.

The bacteria in the non-treated sample developed rapidly, whereas in the sample treated with Microban antibacterial protection, bacteria present in the product and surrounding area were reduced.

1.8. CHECKING OF SURFACES:

* Cues: tables acting as Evaluation
Part 2: “Installation guide”

Part 2 of SILESTONE FABRICATION MANUAL is called “INSTALLATION GUIDE”. It can be classified as M2. Inducing action or as an individual or isolated technical manual; or to be more precise as the sub-genre ‘Assembly instructions manual’ due to the clarity with which communicative purposes are developed. For the purposes of the analysis, this second part has been analysed as an independent manual.
M2. **Inducing action:**

Introduction (#):
The purpose of this manual is to provide the installer with specific instructions related to the installation of a Silestone worktop. The following sections include the suitable handling of joints, edges, back splashes and gluing. Additionally, this manual is aimed at improving customer care, cleaning and safety measures. Our goal is to provide you with the necessary tools and knowledge in order to carry out the tasks correctly and achieve customer satisfaction.

General information [part of the Introduction]:
1. Check all the documentation before leaving the workshop to get a clear idea of what is likely to be involved in the installation.
2. Take all required material and special tools from the workshop.

 - **(Continuing contact⇒) Action (#):** 3. Check that all the necessary Silestone pieces are available, that all the colours match (no change of tone) [aside] and that all the Silestone edges have been correctly manufactured at the workshop. Inform the workshop manager of any irregularity.

 * **Cue:** picture

Warnings.
4. Measure the Silestone pieces with care; they are heavy. To avoid scratching them, do not let them touch any abrasive surface. Pile the pieces face to face and back to back. Secure the Silestone pieces with ratchets—During the transport, tie the load with straps and avoid any movement that may damage or break the pieces.
5. Lift and move the Silestone pieces with care; they are heavy. To avoid scratching them, do

1 Symbols used for analyses and adapted from Lassen’s Model as a new proposal:

- **Obligatory step** / Sub-steps role: sub-steps “Specification” as specific
- **Semi-obligatory step** / features/details of information; [Explanation] as
- **Non-obligatory step** / “detailed description of action to make more informative”;
- [aside] as “additional information (contact number, address, etc)

* semi-obligatory sub-step / #: steps or sub-steps from other moves.

Cues: headings, preview, metatext, index, table of contents, pictures, tables.
not let them touch any abrasive surface. Pile the pieces face to face and back to back.

6. Secure the Silestone pieces with ratchets- During the transport, tie the load with straps and avoid any movement that may damage or break the pieces.

- **Reference to dealers (#):**

7. Note down the special instructions (special drill bits, location of kitchen sinks/taps, etc) [aside]. Note the contact phone number of the templater in case you have any questions.

9. Contact your supervisor immediately to solve any issues.

8. **Be careful not to damage** walls, furniture, machinery and floors when transporting Silestone in and out of the customer’s home.

❖ **Actions:**

A1. VERIFICATION BEFORE INSTALLATION.

1. Evaluate the area before starting work.

2. Before starting, check the conditions of the furniture, floor, carpets, walls, machines, drawers, etc.

3. Measure the furniture and compare with the measurements on the work sheet.

4. Check the levelling of the furniture. And check that the new worktop does not obstruct the opening of Windows and drawers before installing it.

- **Reference to dealers (#):** Check that the kitchen sink and the stove have been disconnected and that the previous worktop has been removed. **If this has not been carried out and if you have any concerns, contact your supervisor and await instructions.**

- 6. **Do not try to disconnect the gas, electric or water supplies (and pipes). Do not install Silestone onto existing worktops.**
 *
 Cue: picture.

A2. CHECKING.

1. Before installing Silestone, assess the situation in order to check how the piece fits and identify any potential problems.

2. Place the Silestone pieces in the correct positions.

3. Line up and check the edge and squareness of the Silestone pieces. Modify the edges to adjust the level and check the joints to determine if these are levelled and square.
 *
 Cue: drawing helping the explanation / picture

A3. EDGES.

1. Measure the worktop in the corners, from the front of the furniture to the Silestone edge.
2. Check the position is centred when installing it.
3. Determine the adjustment of the joints. The edge line up will be determined by the size of the joints.
4. Verify that the worktop installation does not prevent the opening of the doors of the furniture, drawers or dishwashe.
5. If there is no backsplash, the back edge of the pieces should be stuck to the wall. If there is a Silestone backsplash, the gap between the Silestone and the wall should be 3mm. A small gap can be hidden by the thickness of the Silestone backsplash.

* **Cue:** drawing showing how to perform the explanation.

A4. LEVELLING. (Cue)

1. Place the leveller against the edge front, in the intersection to the joints. This will indicate if the Silestone pieces are straight and lined up.
2. Check the level of edges and joints again. Check that all the Windows and drawers can be opened before installing the worktops.

* **Cues:** drawings showing how to perform the explanations.
3. Determine where it would be necessary to install wedges to adjust the level between the pieces.

A5. JOINTS. (Cue)

A6. CUTOUTS- SINKS AND KITCHEN CABINETS. (Cue)

1. For overmounted sinks, determine the centre of the sink based on the configuration of the furniture base. Applying adhesive tape to Silestone you can mark the centre of the kitchen sink for cutting using a pencil or marker.
2. Centre the oven or hob under the worktop.
3. Leave a space of at least 3mm along all the sides of the kitchen sink to allow for kitchen to sink expansión.
4. Always doublecheck the measurements before manufacture.
5. Apply temporary adhesive between the undermounted sink and the Silestone.

* **Cue:** Drawing showing how to perform point 5 or see the final result.

In the case of the undermounted sink the following steps should be followed:
Joining the kitchen sink tab to the underside of the worktop with Murofix adhesive.

* **Cues:** drawing showing how to perform A.

A. Secure the sink with reinforcement.

* **Cues:** drawing showing which product use to perform B.(…)
Warnings.
In the event of not having plugs, staples and/or volts, the following is proposed:
A. Make the required cutout.
B. Polish the inside edges of the cutout.
C. Stick the kitchen sink tab with Murofix.
D. Make a Silestone reinforcement. Attach the Silestone reinforcements with Solumastic on the tab and worktop.
Note [aside] [as part of the warnings]: There is another option of installing the reinforcement first and then sticking the kitchen sink tab with Murofix.
* Cue: picture.

Action:
A7. EDGES. (Cue)
A8. ADHESIVE PROCESS. (Cue)
A9. MAKING THE JOINTS. (Cue)
In order to avoid silicon marks [Result] we recommend using the following procedure for the installation of joints:
1. POSITION PACKAGING TAPE ON THE JOINT [explanation]
 * Cue: picture helping with explanation
2. APPLY THE SILICONE ALONG THE EDGE AS SHOWN IN THE IMAGES [explanation]
 * Cue: picture helping with explanation
3. POSITION THE PIECES CLOSE TOGETHER BUT WITHOUT TOUCHING [explanation]
 * Cue: picture helping with explanation
4. STRAY CLEANCOLORSIL ON THE JOINT [explanation]
 * Cue: picture helping with explanation
5. PRESS THE PIECES TOGETHER TIGHTLY [explanation]
 * Cue: picture helping with explanation
6. REMOVE THE EXCESS SILICONE WITH A PUTTY KNIFE [explanation]
 * Cue: picture helping with explanation
7. CLEAN THE WORKTOP WITH CLEANSTONE OR CLEANCOLORSIL [explanation]
 * Cue: picture helping with explanation

A10. BLACK SPLASHES / UPSTANDS. (cue) (…)
A11. KITCHEN SINK TAPS. (cue) (…)

A12. FINAL CLEANING. (cue) (…)

- **Action:**
 1. Clean the Silestone worktop.

- **Reference to customers (#):**
 Ask the customer to fill in any relevant paperwork.
 4. Thank the customer and give the worktops a final check that all is perfect.

- **Action:**
 3. Clean the floor if necessary.
 5. Remove all the cuttings and rubbish.
 6. Leave the working area as clean as you found it [Explanation]

A clean working area causes a good impression and provides a safe environment [+ Result].

- **M4. Continuing contact:**

 FINAL INFORMATION (Cues)

- **Action:**
 1. Inspect the Works with customer. [how to do the final and successful checking with customer; how to deal with customers].

* Cue: picture showing inspection with customer.
 3. A fan under worktop kitchen sink has been installed inform the customer to wait 24 hours to connect the piping. [how inform customers about installation]

- **Reference to customers**
 2. Ask the customer to fill in and sign the installation Approval Form.

- **Cues: WORK TOOLS**

- **M5. Warnings (#):**

 PRECAUTIONS.
 1. If the kitchen walls or the ceiling are going to be painted, cover the worktop. Some paint strippers used to remove paint can damage the surface.
 2. Place a sticker on the worktop with precautions to be taken.

 A. Do not climb onto the worktop.
 B. Do not use oven de-greasers or bleach.
Part 3: “Care & Maintenance”

Part 3 of SILESTONE FABRICATION MANUAL is entitled: “CARE AND MAINTENANCE”, which would be designated as M3. Anticipating and solving problems. This part could also operate as a different or independent technical manual or maintenance manual, due to the strength of its communicative bias. For analysis purposes, this part will be considered as an independent manual.
M31. Anticipating and solving problems:

1.1. CLEANING – POLISHED SILESTONE (Cues)

Introduction / Advising part.

- Description:
 - * Specifications:
 Daily maintenance of the Silestone worktops. To clean your Silestone worktop we recommend using a normal soap with a non-metallic scourer/scrubber.

 - Daily maintenance of the Silestone flooring. The following processes are recommended:
 - Definitions:
 BRUSH: the brush is a typical tool in the daily cleaning of any horizontal surface, including Silestone. A soft brush or broom is recommended for our smooth surfaces. [Specification]
 - * Specification: Vacuum cleaning is recommended for any horizontal surface and large areas.
 Definition: MOP: A mop is able to collect microscopic abrasive elements and potential agents that can stain the surface. This is normally used after brushing or vacuum cleaning. [Specification]
 - WASHING: Regular washing of the Silestone floor is necessary. We recommend using a solution of water with a neutral pH detergent –follow the product guidelines. [* specification]
 - RINSING: This is one of the most critical steps in the regular maintenance of the floor. It is a good idea to use two buckets of water to avoid rinsing with dirty water! [* specification]

1 Symbols used for analyses and adapted from Lassen’s Model as a new proposal:

** Obligatory step / Sub-steps role: sub-steps “Specification” as specific

♦ Semi-obligatory step / features/details of information; [Explanation] as

* Non-obligatory step / “detailed description of action to make more informative”;

[aside] as “additional information (contact number, address, etc)

* semi-obligatory sub-step / #: steps or sub-steps from other moves.

Cues: headings, preview, metatext, index, table of contents, pictures, tables.
1.2. CLEANING SILESTONE LEATHER FINISH (Cues)

Introduction

- **Description:**
 - **Definitions:**
 The leather finish is a new matt polish with a luxurious texture. Up to 30 new colours are available in this new finish.
 - Ebony Pearl, Mont Blanc, Blanco Capri, Gris Expo, Stellar Negro, Negro Tebas, Negro Anybis, Satori, Koan, Haiku, Gedatsu, Unsul, Vital, Fun, Cool, Enjoy, Dream.
 - *Siliconstone Leather* is an especially beautiful product, with a warm and natural texture but due to its satin/rough finish, it requires special care (Blanco Zeus, Blanco Maple, Blanco Norte, Yellow…)

- **Actions:**
 In order to keep the surface as good as new, the following products are recommended: Q-Force, Q-Action and Cleanstone; warm soap and water can also be used for general cleaning.

 To correctly clean *Siliconstone Leather*, the following is recommended:
 - Pour the product on the surface and rub with a pad (*Scotch Brite* type) or non-metallic scourer/scrubber.
 - Rinse with plenty of water.
 - Dry with a clean cloth.

- **Trouble-shooting.**
 - **Problem:** In the case of a spillage, we recommend the use of a *kitchen towel* in order to soak up the stains before starting with the cleaning steps described above.
 - **Action:**
 - **Problem:** When the stains are difficult or have been on the worktop for a long time.
 - **Action:** pour the cleaning product directly on to the stains and wait for 10 minutes before cleaning.
 - **Causes:** Although *Siliconstone* is a material with excellent performance, it is not indestructible and some agents can damage it.
 - **Action:** For this reason we discourage the use of paint solvents, adhesive solvents or resin solvents.

- **Continuing contact (#).**

- **Action:**
 - **Reference to dealers:**

If you have any questions regarding the suitability of a product or the cleaning method, please contact the customer care service (Tel. number +34 950 444 175) [aside] There is a cleaning video available at www.silestone.com [how to monitor customers in a fast and efficient way online]

1.3. LEATHER PLUS

❖ Introduction (#).

Leather plus is a specific product for treating Silestone leather which allows to enhance the colour and the natural texture of the material, it also reduces the effect of fingerprint marks.

❖ Description (#):

* **Definition:**

MAIN CHARACTERISTICS: It is a hydro-oil repellent product.

* **Specifications:**

It does not turn yellow as time goes by.
The product has a high performance (approx. 20m2/L) [aside]. It is sold in packages of 1,000 ml.

❖ Actions:

A1: The product must be applied over a clean and dry surface. In order to do that [Result], it is always recommended to clean the piece again before applying the product, as the presence of water and / or dust causes a non uniform treatment [explanation] (it is recommended to use Q-Force for cleaning the Silestone) [aside]. [Although this part could be located within “Specifications”, herein it has been classified as “Actions” due to its maintenance character].

* **Cues:** picture helping with explanation.

A2: The product must be purred on the cloth and it must never be spilled directly over the surface to be treated. Do not use paper for application.

* **Cue:** picture accompanying explanation.

Apply the product in a uniform way on the material distributing a thin layer over the surface to be treated, rubbing energetically until the excess is removed. It is very important to avoid the formation of any superficial coat. Remove the product excess with a completely dry cloth.

* **Cue:** picture.

A3: As it is shown in the picture, by applying the Leather Plus product in the A-zone, the tone is enhanced as well as a more effective protection against stains is achieved.

❖ Warnings: ADVICE: For a better protection, repeat the treatment after 5 min, leave the
treated surface with no use to leave it dry completely.

1.4. OIL AND FOOD PRODUCTS.

✓ Trouble-Shooting

• Description (#):
 TYPES: Engine Oils, Food Oils, Lubricating Oils, etc.
 * Cue: picture showing types.
 * Problems:

 PROBLEM: Oil can be very difficult to remove from most stones. [*cause] The oil will penetrate the stone and spread. Try to dry the spillage as soon as possible. [*Solution]

 * Action / Solution: (can be equated, solution and action)
 1. Remove the excess oil with a clean cloth.
 2. If the stain does not disappear, or if it has dried on the Silestone, pour Q-Force or Q-Action onto it and rub thoroughly with a non-metallic scourer/scrubber.
 3. If the stain persists, pour Q-Force and leave for 10 minutes.
 4. If the stain has not disappeared, apply a universal solvent that does not contain dichloromethane (universal solvent made with phenylacetone and alcohol) [*aside].

1.5. ADHESIVES (Cues)

✓ Trouble-Shooting.

• Description (#):
 TYPES: Waste from adhesive tapes, sellotape, labels, etc.
 * Problems:

 PROBLEM: Label adhesive remains on Silestone surfaces. Some remains of adhesive tape can penetrate the stone surface and can be very difficult to remove. [*cause]

 * Action / Solution:
 1. Apply a neutral soap or scrub with a non-metallic scrubber.
 2. If the stain persists, pour Q-Force and leave for 10 minutes.
 3. (corregir 3.) If the stain still persists, apply a universal solvent that does not contain dichloromethane (universal solvent made with phenylacetone and alcohol) [*aside].

1.6. SHOE POLISH.

✓ Trouble-Shooting.

• Description (#):
 * Definition:
TYPES: All the liquid polishers including the White varieties.

* **Problem:**

PROBLEM: The dyes in the shoe polishes can enter the Silestone leaving a dirty stain.

* **Action / Solution:**

SOLUTION:

1. **If it is dry [cause]**, remove the excess shoe polish with a Sharp blade. Apply Q-Force or Q-Action to help in the lubrication of the blade and prevent scratches.

2. Clean the area thoroughly with solvent and dry with a clean white cloth.

3. **If the stain has not disappeared [cause]**, apply a universal solvent not containing dichloromethane.

1.7. MUD

❖ **Trouble-Shooting.**

* **Description (#):**
 * **Definition:**

 TYPES: Mud, dirt, clay, etc.

* **Problem:**

PROBLEM: Most types of dirt are not a problem, but red clay can leave a mark [cause].

* **Action / Solution:**

SOLUTION: 1. Rinse with water a few times.

1.8. BASES, ALKALIES

❖ **Trouble-Shooting.**

* **Description:**
 * **Definition:**

 TYPES: The strong basic compounds damage the material, for example ammonia (NH3).

* **Problem.**

PROBLEM: They directly affect the polyester resin.

* **Solution.**

SOLUCIÓN:

1. Immediately remove the product and then rinse the Silestone surface with water.

2. If the chemical product has stained the Silestone, there is no solution.

1.9. LAYER OF SOAP.

❖ **Trouble-Shooting.**

* **Description:**
 * **Definition:**
Types: Layers of soap in shower walls and bathroom worktops.

* Problem.

PROBLEM: The soap used when showering can accumulate on the bathroom walls leaving a layer of soap or with the shape of water stains.

* Solution:

SOLUTION:

1. If the solvent is spilled onto the Silestone [*cause], remove it as soon as possible.
2. If there is a stain [*cause], there is no solution possible.

1.10. SOLVENTS MADE WITH DOCHLOROMETHANE.

- Trouble-Shooting.

- Description (#):

- Specifications (#):

TYPES: Solvents generally used to remove paint.

* Problem.

PROBLEM: The solvent chlorine attacks the polyester resin.

* Solution:

SOLUTION:

1. If the solvent is spilled onto the Silestone [*cause], remove it as soon as possible.
2. If there is a stain [*cause], there is no solution possible.

1.11. RUBBER / RUBBER PADS.

- Trouble-Shooting.

- Description (#):

- Specifications (#):

TYPES: Any type of tyre brand for cars, trucks, carts, etc.

* Problem.

PROBLEM: These can leave a rubber track on the surface. The tyre marks [*cause] very rarely leave stains, but can be very difficult to remove from porous surfaces, such as cement, brick and rough stone.

* Solution:

SOLUTION:

1. Scrub thoroughly with Q-Force or Q-Action. Scrub with a hard brush.

1.12. POLLEN.

- Trouble-Shooting.
• **Description:**
 * **Specifications:**
 TYPES: Dry powder on the Silestone surface. Pollen alone is loose and can be removed easily.
 * **Problem.**
 PROBLEM: The problems with pollen relate to contact with water and humidity. [*cause]*
 * **Solution:**
 SOLUTION:
 1. Apply hydrochloric acid until it is removed.

1.13. BODY FLUIDS.

 ✤ **Trouble-Shooting.**

 • **Description:**
 * **Definitions:** Urine and vomit.
 * **Problem.**
 PROBLEM: Urine and vomit include acids which can corrode Silestone [*cause*]. The proteins they contain can also have stains the stone.[*cause*]
 * **Solution:**
 SOLUTION:
 1. Apply Q-Force or Q-Action.

1.14. PENCIL.

 ✤ **Trouble-Shooting.**

 • **Description (#):**
 * **Definitions (#):**
 TYPES: Graphite and indelible pencil.
 * **Problem.**
 PROBLEM: The pencil lead marks the stone surface.
 * **Solution:**
 SOLUTION:
 1. Try to remove it with an eraser.
 2. If it is not removed, apply Q-Force or Q-Action. --**Cue:** picture.
1.15. LIPSTICK AND MAKE UP.

Trouble-Shooting.

• Description (#):
 * Specifications (#):
 TYPES: Any colour and type.
 * Problem.
 PROBLEM: Oily wax and dyes can be difficult to remove.
 * Solution.
 SOLUTION:
 1. Remove the lipstick excess with a Sharp blade. If the lipstick is very concentrated and you try to clean it without removing the excess [*cause] it will only spread the lipstick.
 2. Once the excess has been removed, clean with Q-Force or Q-Action and a non-metallic scourer.

1.16. BLEACH.

Trouble-Shooting.

• Description (#):
 * Definitions (#):
 TYPES: Common domestic bleach, solution of sodium hypochlorite.
 * Problem.
 PROBLEM: Bleach can be used for the cleaning and disinfecting of the Silestone as long as it is quickly rinsed thoroughly with water.
 Bleach contains sodium hypochlorite, which may affect the polyester resin after approximately 12 hours of exposure.
 * Solution.
 SOLUTION: 1. If it makes a mark [*cause], there is no solution.

1.17. HARD WATER STAINS (LIME SCALE).

Trouble-Shooting.

• Description (#):
 * Definitions (#):
 TYPES: Stains produced by limescale (magnesium and calcium salts, mainly) [aside].
 * Problem.
 PROBLEM: The water salts will leave mineral deposits that can be seen as a white layer of large mineral crust deposits.
 * Solution.
SOLUTION: 1. Apply a solution of weak hydrochloric acid (or supermarket brand-Viakal) [aside]. Rinse with water. Make sure that this water is as soft possible, if the concentration of salt is high [*cause] the lime deposits will re-appear.

1.18. MORTAR.

Trouble-Shooting.

Description (#):
* Definitions (#): Cement, thin sediments, sediment mud, grout layers and other cement-based wastes.
* Problem.

PROBLEM: They can leave a film on the Silestone which can be difficult to remove.

Solution.

SOLUTION:
1. If the layer is thin [*cause] clean the Silestone surface with a neutral pH cleaner and water.
2. If the layer is hard [*cause], clean the surface with a diluted solution of hydrochloric acid.
 Then, scrub.

1.19. SYNTHETIC GLUE.

Trouble-Shooting.

Description (#):
* Definitions (#): Types: Strong glue, hot glue, epoxy resin, modelling glue.
* Problem.

PROBLEM: These types of glues will rarely stain, although they are usually difficult to remove from the surface.

Solution.

SOLUTION:
1. On a flat surface, remove the remaining glue with a sharp blade.
2. Any waste remaining can be removed with universal solvent not containing dichloromethane and clean cloth.

1.20. WATER-SOLUBLE GLUE.

Trouble-Shooting.

Description (#):
* Definitions:
 TYPES: Casein, epoxy, adhesive and leather glue.
* Problem.
PROBLEM: The White and clear glue rarely stains, although the darker glues can leave stains which can be difficult to remove.

* Solution.

SOLUTION:
1. Remove the excess glue with a Sharp blade.
2. Clean with Q-Force or Q-Action. Try to use a non-metallic washing-up scourer.

1.21. NAIL POLISH.

Trouble-Shooting.

- **Description (#):**
 - **Specifications:**
 - **TYPES:** Of the lacquer or enamel type.
 - **Problem:**
 - **PROBLEM:** The nail polish will dry very quickly. For this reason, the dye they include will rarely enter the polished Silestone.
 - **Solution:**

Solution:
1. Remove immediately with a clean cloth.
2. Apply acetone to the stain with a clean cloth. Continue applying acetone and drying until it disappears.
3. If the stain is old, use poultice with solvent (toluene, alcohol, etc.) [aside] and poultice powder.

Warnings:

CAUTION: do not leave in contact with the Silestone more than 12 hours.

1.22. OILY PAINT.

Trouble-Shooting.

- **Description (#):**
 - **Specifications (#):**
 - **TYPES:** All the oil-based paints as well as solvents and resins used in paints and glues.
 - **Problem:**
 - **PROBLEM:** The oil-based paints are the most difficult to remove. The oil and solvents included in these paints will absorb the dye into the Silestone.
 - **Solution:**

Solution:

SOLUTION:
1. Immediately dry any excess from the surface with a clean cloth.
2. Pour Q-Force or Q-Action and scrub.
3. If it does not disappear, apply solvent, scrub and dry. Continue drying until you notice that dye only in the cloth.

1.23. WATER PAINTS.

Trouble-Shooting.

- Description (#):
 - Specifications (#):
 TYPES: All the water-based paints and polymer resins-
 - Problem.
 PROBLEM: These are not so difficult to remove as the oil-based paints but can cause problems sometimes.
 - Solution:
 SOLUTION:
 1. If it is wet [*cause], clean immediately with a White clean cloth.
 2. Clean the area with water and a good detergent.
 3. If the stain is dry [*cause], remove the paint with a Sharp blade. If removing it is difficult [*cause / problem], apply a solution of soap and water and remove while still wet.
 4. Use Cif cream with a non metal scrubber.
 5. If the stain has not disappeared [*cause], use Q-Force or Q-Action.

1.24. SILICONE.

Trouble-Shooting.

- Description (#):
 - Specifications (#):
 TYPES: Silicone is used to join Silestone.
 - Problem.
 PROBLEM: Silicone marks may be left during the installation.
 - Solution:
 SOLUTION: Apply Clean Colorsil. Leave for a few minutes. Scrub with a cloth and dry.

1.25. TOBACCO

Trouble-Shooting.

- Description (#):
 - Specifications (#): TYPES: Cigarette, cigars and even herb cigarettes smoke stains.
* **Problem:*** PROBLEM: Nicotine can cause a light yellow stain that can be difficult to remove.
* **Solution:*** SOLUTION: 1. Clean the area thoroughly with Q-Force or Q-Action, and scrub with a green scourer/scrubber.

1.26. INK.

❖ **Trouble-Shooting.**

- **Description (#):**
 - **Specifications (#):** TYPES: Pens, magic markers, carbon paper, newspaper ink, etc.
 - **Problem:*** PROBLEM: It is very important to remove the stain as quickly as possible.
 - **Solution:*** SOLUTION:
 1. Clean the area thoroughly with Q-Force or Q-Action, and scrub with a green scrubber.
 2. If solvent is going to be used, make sure it contains no dichloromethane.

1.27. GREEN TEA STAINS.

❖ **Trouble-Shooting.**

- **Problem:*** PROBLEM: Usually, green tea stains are easily to remove with clean water. Only in some light Silestone colours, and after 24 hours of staining with green tea, a special action might be needed.
- **Solution:*** SOLUTION:
 1. Clean the area thoroughly with Q-Force.
 2. If the stain remains, use nitric acid solution and remove it with water.

❖ **M5. WARNINGS (#)**

PREVENTIVE MEASURES AND CARE (cue)

❖ **Actions.**

1. Do not place items onto the surface directly from the hob.
2. Do not use water or oil proofing, or sealers on Silestone.
3. Do not use paint strippers, caustic soda or products with a pH higher than 10. If bleach or solvent is used, this should be rinsed with water and never be left on the surface permanently.
4. Do not use solvents with dichloromethane or chlorine by-products.
5. Do not place Silestone outside or in areas with U.V. ray lamps.
6. When manufacturing Silestone always use water to avoid dust. [• **Safety (#):** Comply with the current legislation regarding Health and Safety at work.]
III.2.2. THE SILESTONE FABRICATION MANUAL

By applying Bhatia’s works and Lassen’s genre analysis model to the technical manuals selected, a similarity in terms of move-structure can be observed.

As stated previously, this manual is divided into three sub-manuals, and each part might correspond to a different move. Therefore, it may be stated that the moves in Silestone Fabrication Manual are divided into different parts and indicated by headings. For instance, Part 1: CHARACTERISTICS would correspond to Move 1: Establishing contact and directing the reader towards the text and the product; Part 2: INSTALLATION GUIDE could be matched to Move 2: Inducing action; Part 3: CARE AND MAINTENANCE would be similar to Move 3: Anticipating and solving problems. However, Part 2 and Part 3 could be also classified as different manuals, therefore becoming separate sub-genres or sub-manuals: Part 2 as an “assembly instructions manual”, and Part 3 as a “maintenance manual” (see Lassen’s classification of technical manuals, 1998: 122). Consequently, it can be stated that these parts are sub-technical manuals within the parent technical manual, which in this case is an instruction manual. Nonetheless, different parts have been analysed as separate technical texts in order to undertake more changes regarding move-steps and sub-steps for the purposes of the analyses.

As has been observed, texts follow to some extent Lassen’s model, but not in the same move-step order. Furthermore, it is noted how the main features of Lassen’s moves are present here as well, but semi-obligatory and non-obligatory steps appear in other moves or simply do not participate in the move-structure established by the Danish linguist. As a result, it can be stated that Lassen’s model is fully updated and useful for the current communicative needs of professional experts in this field.

Following Move 1 from Part 1, we observe how the obligatory step “introduction” occurs in this first section, and is generally accompanied by the non-obligatory step “description” and its corresponding sub-steps: “definitions→ specifications”.
Moreover, due to the frequency of this non-obligatory step, “description” could be considered as a semi-obligatory step. Therefore, it could be stated for discussion that this step is a non-obligatory step for Lassen, whilst it could be a semi-obligatory step in *Silestone* technical manuals; even if it is eventually decided not to change that status in this study.

Other non-obligatory steps such as “evaluation” (or as sometimes is specified in the text: “Control”) are displayed as dependent upon the step “description → definitions or specifications” as in 1.2. (See p. 64-65) and therefore acting as a sub-step. In 1.7 “evaluation”, as a non-obligatory step, is displayed after the non-obligatory step “safety”. Thus, in this section, “evaluation” complies with Lassen’s move-step order (See pp. 66-67). Furthermore, it can be appreciated how “continuing contact (M4) → reference to dealers (#)”–which for Lassen and Bhatia is the final part of the move-structure–is inserted in this move as a sporadic step, but never as an independent move (See p. 65, section 1.6). It is also worth highlighting how different steps (as established in Lassen’s model) are indicated in *Silestone* texts through headings, such as: “Warnings, safety, evaluation” (See pp. 66-67). These headings facilitate the identification of the move-steps structure.

In Part 1 it can be concluded that obligatory steps such as “introduction” participate in the majority of sections; semi-obligatory steps such as “description”, with its corresponding sub-steps “definitions” and “specifications” occur in most cases; and semi-obligatory steps such as “warnings” are also very frequent, which are almost always accompanied by the sub-step “safety”, although not always by “evaluation”. Therefore, the most frequent semi-obligatory steps in part 1 are “introduction” and “warnings”, whereas the non-obligatory steps are “description”, “evaluation” and “reference to dealers”, with “evaluation” being categorised here as positive or negative and sometimes behaving as a sub-step like

1 These sections are from the analyses (e.g. pp. 63-67; 69-73; 75-86) and not from the headings sections herein.
“explanation”, “specification” and “how to order” as can be observed in pp. 63-67.

Part 2 of the SILESTONE FABRICATION MANUAL is called “INSTALLATION GUIDE”, which has been identified as M2 - Inducing action. However, this manual could function as a different or separate technical manual; or to be more precise as an “assembly instructions manual” (for the installer). This Part 2 has been analysed as an independent technical manual in order to introduce some proposals of innovation in the genre structure. Here, the semi-obligatory step “introduction” from M1 has been included in the manual. In the installation guide, “M2 - Inducing action” is the dominant move, and it slightly differs from Lassen’s model in terms of order. As a new element when compared with her analysis, the obligatory step “introduction” has been included at the beginning (See p. 69). The semi-obligatory step “warnings” is displayed throughout the sections, therefore it is located in a different order. At the beginning of M2, the non-obligatory step “action” from M4 occurs before and after “warnings” (See General Information, p. 69). The semi-obligatory step “action” in M2 is also maintained in this manual’s structure, and many different “actions” are found due to the length of this manual and therefore they have been enumerated as A1, A2, etc. Some “actions” include “cues”, which have been considered as sub-steps and not as steps. In the case of “warnings” in A6 (See p. 71), they are classified as a semi-obligatory step. As established in the reference model, “M4 - Continuing contact” emerges in the final part of the manual and also complies with Lassen’s move-step structure, where “cues” and “action” are developed as semi-obligatory steps (See p. 73). However, in this manual “reference to dealers” does not occur in such a way as it is generally described by the Danish linguist. This is due to the fact that these manuals are intended for installers and not for customers, therefore the non-obligatory step “reference to dealers” has been replaced by “reference to customers” (See p. 73). In addition, it must be noticed that although almost all “warnings” in this manual are listed as semi-obligatory steps, the text now requires the creation of a new move “M5 -
Warnings” (See p. 73), which is clearly differentiated in the final part of the manual under the title of “precautions”. Accordingly, as M5 appears as a new move after M4, it is indicated by the symbol “#”; the same is applied to those steps that appear in a different order as established in Lassen’s move structure. This symbol indicates that a move in fact takes part as a ‘step’ in another, different move, or, that steps and sub-steps occur in different moves if compared to those of Lassen’s model. Finally, in this move “safety” or “evaluation” steps cannot be found.

Part 3 of the SILESTONE FABRICATION MANUAL is: “CARE AND MAINTENANCE”, which could be listed as the third move: “Anticipating and solving problems” as part of the set, and which could also be considered as a different and separate sub-technical manual by operating as a “maintenance manual” (for customers).

This manual starts with M3, where the semi-obligatory step “introduction” has been included as an innovation. “Introduction” is also accompanied by the non-obligatory step “description” with the respective sub-steps: “definitions” and “specifications” (See p. 75, section 1.1.). All sections in this manual follow to some extent the same structure, although some of them are more complete than others. The first parts in the manual have generally fewer sections and consequently they are simpler in step and sub-step structure, even if the following sections include a wide variety of steps. The next section “CLEANING SILESTONE LEATHER FINISH” (See p. 76, section1.2.) follows some of the main semi-obligatory steps of Lassen’s model such as “action” and “trouble-shooting”. Furthermore, semi-obligatory steps such as “introduction” from M1 are always included at the beginning of sections and they always precede “action” (See pp. 76-78, sections 1.2, 1.3). As this semi-obligatory step is included in a different move, it is indicated through the symbol (#); “M4 - Continuing contact” is converted into a step in this section along with the semi-obligatory step “action” and the non-obligatory sub-step “reference to dealers” (See p. 76-77). In the
following sections from 1.4 onwards, move-step structure changes. The semi-obligatory step “introduction” (from M1) is not found. This final section of the manual is dominated by the semi-obligatory step “trouble-shooting” and its different sub-steps, which corresponds exactly to the model proposed by Lassen. It is true that this part includes a “description” non-obligatory step as a mode of introduction, which is also accompanied by the sub-step “definition”, indicated through the headings TYPES or MAIN CHARACTERISTICS (See pp. 77-86). Nonetheless, in subsequent sections not many “cues” (headings indicating moves or steps, pictures or tables) are found and other semi-obligatory steps that follow Lassen’s move-step-structure such as “warnings” cannot be detected either. Therefore, this final section is very similar in structure to Lassen’s proposal. Only some sections such as 1.21 include the semi-obligatory step “warnings” after “trouble-shooting” (See p. 84). Sections with “trouble-shooting” are mainly made up of “problems” and “solutions”, which comply exactly with the order she suggested.

Considering contrasts with the Danish linguist’s model, the non-obligatory step “description” usually participates in almost all the “trouble-shooting” parts as introduction to the sections, and it is marked by (#). At the end of the manual, there is a section clearly differentiated and named “PREVENTIVE MEASURES AND CARE”, which has also been included in the final section of Part 2 (Installation Guide), where another move (M5) “warnings” (See p. 86) has been implemented as our contribution. The addition of this new move does not correspond to any specific section but works individually as a coherent move, both in content and structure. It has been named “M5 - Warnings” and has been indicated by(#) as an extension to Lassen’s move structure.

From this analysis, it can be concluded how important it is for the Cosentino firm to communicate the purposes of “warning, precaution, recommendations and advising”. Consequently, following Bhatia’s principle that “communicative purposes shape the text”, it was decided to insert “warnings” as a different move,
and therefore expand Lassen’s move-structure. This decision has been undertaken in order to adapt the model to the different communicative purposes conveyed by the texts. In this new “M5 - Warnings”, “action” acts as a semi-obligatory step, and “safety” may be classified as a non-obligatory step. This new move is therefore indicated through the symbol ‘#’, the same is done for “safety” because it belongs to M1 and in contrast it is placed in a different order. This whole process has been carried out in an attempt to adapt Lassen’s move-step model to the content of this prototype of texts, although it eventually leads to changes in her move-step proposal for technical manuals.

In the Silestone texts analysed, moves and steps are not easily identified in terms of headings or sub-headings. Although headings indicate some relevant characteristics of moves, they do not define and refer to the whole move as in the case of “trouble-shooting”, as happens in other engineering or electronic technical manuals which will be discussed below.

III.2.3. SILESTONE TRAINING MANUAL – INSTALLATION GUIDE

This technical training manual has been selected from the Cosentino firm. As the name indicates, the purpose of this training manual is to provide sales personnel with a catalogue for the product they are expected to sell, in this case Silestone counter tops. In training manuals, salespeople are not trained as specialists in assembly or installations and may not even have technical knowledge. This is shown in the language used which is general and easy for salespeople to understand. Accordingly, this training manual might be considered as the link between the company – via the sales person – and the customer, which is the company’s and installer’s purpose: to achieve full customer satisfaction. As could be presupposed, in training manuals the communicative purposes “description” and “explanation” dominate the whole text.
Graphic Genre Analysis of the *Silestone* Training Manual

M1. Establishing contact and orienting the reader towards the text and the product.

- **Intro:** The purpose of this manual is to provide the installer with specific instructions related to the installation of a *Silestone*® countertop. The following sections include the suitable handling of joints, edges, backsplashes and gluing. Additionally, this manual is aimed at improving customer care, cleaning and safety measures. Our goal is to provide you with the necessary tools and knowledge in order to carry out the tasks correctly and achieve customer satisfaction.

M2. 2. Inducing action – “General Information” (cues)

- **Action 1:** Check all the documentation before leaving the workshop (*explanation*) to get a clear understanding of what is likely to be involved in the installation (*result*).
- **A2:** Take all required material and special tools from the fabrication shop.
- **A3:** Check that all the necessary and *Silestone* pieces are available and that all the colors match (no change in tone) and that all the *Silestone* edges have been correctly manufactured at the fab shop. Inform the fab shop manager of any irregularities (*Reference to dealers (#)*).
- **A4:** Take note of the special instructions (special drill bits, location of kitchen sinks/faucets, etc) Note the contact phone number of the templater in case you have any questions [*Reference to dealers (#)*]

- **Reference to dealers:** Contact your supervisor immediately to resolve any issues.

1.1. Inspect before installation.

- **A1:** Evaluate the area before beginning the job.
- **A2:** Before starting, check the conditions of the cabinets, floor, carpets, walls, machines,

1 Symbols used for analyses and adapted from Lassen’s Model as a new proposal:

** Obligatory step / Sub-steps role: sub-steps “Specification” as specific

- Semi-obligatory step / features/details of information; [Explanation] as

* Non-obligatory step / “detailed description of action to make more informative”;
 / [aside] as “additional information (contact number, address, etc)

* semi-obligatory sub-step / #: steps or sub-steps from other moves.

Cues: headings, preview, metatext, index, table of contents, pictures, tables.
drawers, etc.

- **A3:** Check that the kitchen sink and the cooktop have been disconnected and that the previous countertop has been removed. If this has not been carried out and if you have any concerns, contact your supervisor and await instructions [*Reference to dealers (#)].

- **A4:** Do not try to disconnect the gas, electric and pipes. Do not install Silestone® onto existing countertops.

1.2. Checking

- **A1:** Before installing Silestone®, assess the situation in order to check how the piece fits and identify any potential problems.

- **A2:** Line up and check the edge and squareness of the Silestone® pieces. Modify the edges to adjust the level and check the joints to determine if these are levelled and square.

- **Cues:** picture accompanying explanation.

1.3. Edges

- **A1:** Measure the countertop from the front of the cabinet to the Silestone® edge.

- **A2:** Check the position is centered when installing it.

- **A3:** If there is no backsplash, the back edge of the pieces should be adhered to the wall. If there is a Silestone® backsplash, the gap between the Silestone and the wall should be 1/4”. A small gap can be hidden by the thickness of the Silestone® backsplash.

- **Cues:** picture accompanying explanation

1.4. Leveling

- **A1:** Place the leveller against the edge front, in the intersection of the joints. This will indicate if the Silestone® pieces are straight and lined up.

- **A2:** Check the level of edges and joints again. Check that all the doors and drawers can be opened before installing the countertop.

- **Cues:** picture helping with explanation.

- **A3:** Determine whether it would be necessary (explanation) to install wedges to adjust the level between the pieces (result).

1.5. Joints

- **A1:** When the line-up of the edges are perfect it is easy to determine if the joints are correctly installed by looking at the cutouts.

- **A2:** Stick some adhesive tape on the piece to be cut. Measure the widest part of the joint and draw the cutting line in the adhesive line with a pencil or marker. Check that the joint is
squared and closed.

- **A3:** Place and adjust the wedges with the suitable thickness under the *Silestone* countertop to level the surface. Check that the joints are not cracked.
 - **Cues:** picture helping explanation.

1.6. Working with Joints

- **A1:** Position packaging tape on the joint.
 - *Cue:* picture helping with explanation.
- **A2:** Apply the silicone along the edge as shown in the image.
 - *Cues:* pictures helping with explanation.
 Etc.

1.7. Adhesive Process

- **A1:** Dirt, dust and any other foreign substance body may interfere with the adhesive quality between the countertops and cabinets. Check that the area is completely clean before applying silicone.
- **A2:** Lift the *Silestone* from the outside edge and place it against the back wall.
 - *Cue:* picture helping with explanation.
- **A3:** Remove the excess silicone with a putty knife.
 - *Cue:* picture helping with explanation.

1.8. Edges

- **A1:** The length of the edge should be smooth and unsplintered, especially in the joints. To polish the rough and sharp edges, sand paper is needed (120).
- **A2:** Flatten out all the joints and the exposed edges that need to be polished.
 - **Note:** Do not use sponges or polish directly on the *Silestone* surface, as it will alter the finish. (aside)
- **A3:** Clean the countertop with lacquer thinner or mild soap and water.
 - **Cue:** picture helping with explanation.

1.9. Backsplashes

- **A1:** Check the measurements and position the backsplashes in their correct locations, against the wall check all the joints.
- **A2:** Each light socket/switch requires 4 measurements. Measure vertically from the countertop to the lower part of the socket, and from the countertop to the top part of the socket, horizontally.

1.10. Faucet Cutouts
A1: Use a suitably sized drill in order to make the cutouts. Use a vacuum cleaner to minimize dust.

Cue: picture helping with explanation.

1.11. Sink Installation

A1: Before installing the kitchen sink a mark should be made with a pencil, 3/4 from the kitchen sink cutout to the outside edge. Adhesive or staples will be used as reinforcement to attach the kitchen sink. **cue:** Install the kitchen sink faucet to the underside of the countertop. Make sure that the area is free from dust **cue.**

A2: Always double check the measurements before manufacturer. Note: There is another option of installing the reinforcement first and then sticking the kitchen sink faucet with caulking. (aside)

- Warranty (#) – “Quality Guarantee” (cues): Check that the doors and drawers can be opened easily and are not obstructed by the Silestone®.

Action: Check that all the Silestone surfaces are clean. It is very important to carry out a point-by-point inspection of all the installation details in order to achieve customer satisfaction.

M3. Anticipating and solving problems.

2. Final cleaning (Cues)

A1: Clean the Silestone® countertop.

- Continuing contact; Action (#): Ask the customer to fill in any relevant paperwork
 Thank the customer and give the countertops a final check that all is perfect

A4: Leave the working area as clean as you found it.

A clean working area causes a good impression and provides a safe environment. (aside)

M4. Continuing contact – Final Information

- Reference to customers: Inspect the work with the customer; Ask the customer to complete and sign the Installation Approval Form; If an undermount kitchen sink has been installed, inform the customer to wait 24 hours to connect the piping (how to act when defect or problem arises): Thank the customer. The impression left on each of your customers will be reflected on the company. Politeness, professionalism and cleanliness are important to achieve total customer satisfaction.
This training manual is intended for the learner (salesperson) and not for the doer (engineer). However, it shows a medium level of difficulty as regards technical language and might present some problems for non-specialist readers. For this reason, the reader—in this case the salesperson or technician—must have previous knowledge about how to install Silestone counter tops and also about doing everything to achieve customer satisfaction (See p. 96, 1.11- Action): **Check that all the Silestone surfaces are clean. It is very important to carry out a point-by-point inspection of all the installation details in order to achieve customer satisfaction.**

Firstly, it is worth mentioning that this training manual follows the same design, structure, textual style and use of pictures as the other Silestone technical manuals in order to make the information accessible. Secondly, regarding move-step structure, M1 is not specified with headings and is composed of only an “introduction” that works as a semi-obligatory step. This step is not accompanied by non-obligatory steps such as “description”, “definition” or “specification” as was the case in other Silestone manuals. Therefore, it can be deduced that most moves in Silestone manuals follow the same move-structure, even though they are different technical manuals whether in terms of content or company. In this M2, which starts with General Information, the non-obligatory step from M4 “reference to dealers” occurs before the action, and this non-obligatory step “reference to dealers” accompanies most of the actions. As in other Silestone’s M2s, there is a great number of the semi-obligatory steps “action”. Almost every “action” includes an “explanation” and “result” as part of the action itself; this specification has been performed in the analysis as an addition to Lassen’s model by considering that almost every action has in itself an explanation and a result. These latter elements may be considered non-obligatory sub-steps instead of proper steps (see p. 94, section 1.4, A3: **Determine whether it would be necessary (explanation) to install wedges to adjust the level between the pieces (result)). Consequently, “explanation” and “result” are present not as steps but as actually constituting the action. However, regarding “aside”, due to its frequency in the
text, this can be specified as a non-obligatory sub-step linked to the action, rather than as an independent step: (see p. 96, section 1.8, A2: Flatten out all the joints and the exposed edges that need to be polished. Note: Do not use sponges or polish directly on the Silestone surface, as it will alter the finish (aside)). Furthermore, we can find a non-obligatory step “warranty” located in M2 and adapted from the original M3. As this step is placed in a different order and move, it is indicated through the symbol “#” (See p. 96, section 1.11). This is carried out in order to visualise all changes taken in terms of move-step structure to adapt the content of the text to Lassen’s model. “Cues”, in this case referring to pictures, appear as sub-steps (as in 1.6, 1.7 or 1.8 helping with explanation, see p. 95) or as independent and isolated steps (See p. 96, section 1.10).

As far as M3 is concerned, it starts with the heading “Final cleaning” (See p. 96) which in itself relates to maintenance, correct handling, and consequently leads to “M3 - Anticipating and solving problems”. In this M3, the semi-obligatory step “trouble-shooting” is not found; only “actions” as semi-obligatory steps are located. Furthermore, a non-obligatory step “reference to customers” - adapted from M4 - is included here (See p. 96; M3: Ask the customer to fill in any relevant paperwork (“reference to customers’)). As regards “asides” (they function in this analysis as non-obligatory sub-steps), they generally complement an action (See p. 96, M3, A4: Leave the working area as clean as you found it. Aside: a clean working area causes a good impression and provides a safe environment). In the previous example, “asides” work as a complementing feature of the action. Concerning changes in Lassen’s move-step structure, it is particularly relevant to highlight how a non-obligatory step “action” from M4 is also included here (See p. 96, M3).

An examination of M4 starts with the heading “Final information”, which indicates a clear ending of the manual. In M4 only “reference to customers” is found as a non-obligatory step instead of “reference to dealers” as stated in Lassen’s analysis. In this training manual, a qualified person is in charge of
installing the *Silestone* counter top but with help and also supervision from the customer. In this “reference to customers” (See p. 96, M4), it can be appreciated how important the customer is to the company. The *Cosentino* firm makes the customer participate in the installation as a training process but with the help of a professional who, in this case, is the installer (qualified person). This strategy is intended to let the customer comment on how the installation has been carried out and to make some corrections during the installation process according to the customer’s taste or view in order to achieve full customer satisfaction, which might be interpreted as a good marketing strategy for the training manual.

Finally, it would be interesting to elaborate on the role of pictures as “cues” in this training manual. Whereas in Lassen’s model “cues” only occur as semi-obligatory steps, here taking “pictures” as cues, I have decided to classify them as semi-obligatory steps and sub-steps. As steps they function independently, whereas as sub-steps they help and also depend on the explanation, action or any other description or specification given in the step, so that they occur as complementing features.

In summary, it is worth mentioning how some steps create other sub-steps in order to adapt the content to Lassen’s move-step structure. However, in this adaptation process, some changes in the design of the genre analysis model are needed in order to reflect all the communicative purposes through moves, steps and sub-steps.

III.2.4. THE SILESTONE BROCHURE MANUAL “SILESTONE QUARTZ SURFACES & YOU”

This Brochure manual has been designed by the *Cosentino* company. The communicative purposes of this manual are intended to “inform” (about care & maintenance), “describe” (properties and characteristics of products) and in some
way “sell” *Silestone* products. This is due to its state-of-the-art design and style, whose eye-catching characteristics draw people’s attention towards the originality of *Silestone* products in artificial natural stone. This manual is intended for any audience; therefore, highly-qualified personnel are not the only target of the brochure because its main purpose is “to inform”. Accordingly, users of this manual can be any customer who may be interested in *Silestone* products, its characteristics and its care and maintenance. Consequently, “instruction” is not found in the manual as a main communicative purpose whereas “information” and “description” are dominant communicative purposes. It may be inferred that this manual is written for the learner and not for the doer due to its high informative character. The analysis of this instruction book shows the following genre aspects with reference to move-step and sub-step structure:
M1¹. Establishing contact and orienting the reader towards the text and the product.

- **Cues:** “Silestone Quartz Surfaces & you” + **pictures of Silestone colours** on the left side.
- **Introduction:** *Silestone* is the world leader in quartz surfaces. Available in over 100 distinctive through-body colours and textures. *Silestone* is ideal for use in a wide variety of applications ranging from work surfaces to tiles, vanity units, bar/reception tops, stepreads, splashbacks, wall-cladding, etc.

- **Evaluation:** *Silestone* by *Cosentino* is the only quartz surfacing material in the world, with patented Microban antibacterial protection.

- **Description:**
 - *Cues: Care and Maintenance*
 Silestone is a quartz surface made from top quality raw materials that present exceptional physical and mechanical features together with unique beauty, ideal for interior decoration[…]
 - *Specifications: SILESTONE CHARACTERISTICS*
 High durability; colour consistency; low maintenance; antibacterial protection

M3. Anticipating and solving problems.

- **Cues:** Routine cleaning
- **Action:** Regular cleaning and maintenance [**action/explanation**] of *Silestone* “Leather” finish will **help maintain its luxurious texture** [**result**]

¹ Symbols used for analyses and adapted from Lassen’s Model as a new proposal:

** Obligatory step / Sub-steps role: sub-steps “Specification” as specific

* Semi-obligatory step / features/details of information; [Explanation] as

* Non-obligatory step / “detailed description of action to make more informative”;
 / [aside] as “additional information (contact number, address, etc)

* semi-obligatory sub-step / #: steps or sub-steps from other moves.

Cues: headings, preview, metatext, index, table of contents, pictures, tables.
Trouble-Shooting.

*Problem: 1. In the event of any stubborn marks on the polished *Silestone* surface
2. Any lime scale or water marks

*Action: 1. Wipe the area clean with warm water…Rinse the area with water after cleaning.
2. Can be removed using household lime-scale removers.

*Cause: HEAT (*cues*). Although *Silestone* is more heat resistant than more other surfaces, all stone can be damaged by sudden and extreme temperature changes especially near the edges.

*Action: For this reason we strongly recommend using a trivet or hot pad to protect your *Silestone* work surface from extreme heat.

CHEMICALS TO AVOID follows the same Trouble-Shooting structure.

Warnings: GENERAL PRECAUTIONS (*cues*) […] protect the beauty of your tops by using a chopping board whenever using knives and a hot pad/trivet when using hot pans.

- **M4. Continuing contact.**
- **Reference to dealers:** *COSENTINO* UK LTD. Address
As a main characteristic of any brochure manual, some persuasive features can be seen such as “*Silestone is the world leader of quartz surfaces*” located on the cover page, emphasising the excellent properties of this original product in artificial natural stone. This manual is supplemented with many visible drawings, pictures and a reader-friendly layout in order to catch customers’ attention. Furthermore, the manual does not show a high number of technical features which might be difficult for the non-specialist reader to interpret. This communicative suitability makes the text accessible for any reader who may be interested in artificial natural stone products.

In the analysis of structure, only three moves are found due to the lack of action and informative character. M1 can be easily found in the cover page with “*Silestone Quartz & You*” (M1 orientating the reader towards the text and the product). In this M1, “Cues” are seen as “pictures” (semi-obligatory steps) and dominate the cover page followed by an “introduction” (semi-obligatory step) (See p. 101, M1) on the cover page where the *Silestone* product is described (*Silestone is the world leader in quartz surfaces*...). The “introduction” is composed of the non-obligatory steps “evaluation” (*Silestone by Cosentino is the only quartz surfacing material in the world, with patented Microban antibacterial protection*) and “description”, where the non-obligatory sub-step “specifications” describing *Silestone*’s main characteristics is found adding specific details to the information (See M1 - Specifications: *high durability, colour consistency*, etc.). M3 starts with the heading (cues) “routine cleaning” which makes reference to maintenance, lubrication, correct handling, etc., as established in Lassen’s model. In this move, a semi-obligatory step “action” can be easily recognised where explanation and result are part of the action itself and are not considered as steps or sub-steps, but as parts of the process (See p. 101 → M3 - Action: *Regular cleaning and maintenance [explanation] of Silestone ‘Leather’ finish will help maintain its luxurious texture [result]*). In the previous example, it can be observed how “explanation” adds a new detail to the action “regular” which makes the verb meaning more informative and specific. Furthermore, the semi-
obligatory step “trouble-shooting” is also clearly identified and located where its semi-obligatory sub-steps “problem, cause and action” take place and are also indicated through headings (Cues) (See pp. 101-102 → M3: Problem: in the event of any stubborn marks..., action: wipe the area clean with warm water...; grey page - cause: HEAT (heading), although Silestone is more heat resistant than most other surfaces, all stone can be damaged by sudden and extreme temperature changes especially near the edges, Action: for this reason we strongly recommend using a trivet or hot pad to protect your Silestone work surface from extreme heat). In this move, the semi-obligatory step “warnings” is included in the final part of the trouble-shooting section, whereas in Lassen’s model it is located in a different place and order. Herein it may be appreciated how order-structure can vary depending on the text and the area of specialisation. Although to some extent Silestone technical manuals show a similar genre structure, they comply with Lassen’s model in the sense that the majority of steps developed through different moves perform the communicative purposes required in these technical manuals. Therefore, Lassen’s model has been slightly adapted to the purposes of this analysis.

Finally, M4 shows the non-obligatory step “reference to dealers”: Cosentino’s UK address. In this final move, neither action nor pictures function as cues, only the address shows some marketing strategies by focusing on customer attention. Last but not least, it is worth highlighting that pictures, seen as “cues”, play an important role in the cover page with eye-catching images of the Silestone product. Despite this, they are not present subsequently to offer explanations or descriptions as in previous Silestone technical manuals; they work as independent semi-obligatory steps.
III.3. Parallels and Contrasts between Lassen’s Model for Technical Manuals and this Contribution

In this section, a comparison of different technical manuals is presented by taking into account Lassen’s model for genre analysis in the field of technical communication. However, in accordance with previous analyses, hypotheses of the validity of her model and this contribution will be tested in this section with the following purposes: on the one hand, establishing whether Bhatia and Lassen’s models can be universally applied to all technical manuals and, on the other hand, if it is advisable to adapt the model—in this case Lassen’s proposal—to fit the different communicative purposes of texts and shape their move-structure. The following tables demonstrate the number of moves which govern diverse technical documents and the kind of changes which might be undertaken in order to adapt Lassen’s model to the communicative needs developed in the texts studied here. The Danish linguist’s proposal is indicated at the beginning of the tables to be considered as a point of reference to understand their interpretation.

Procedure

Firstly, a detailed analysis of three Silestone technical manuals (Instructions, Training and Brochure) will be carried out in order to find similarities and differences in contrast with Lassen’s model. This analysis will also focus on the different variations applied by considering text structure and communicative purposes. Every move that participates in each technical manual will be marked with ‘√’, and all variations and changes carried out will be indicated on the right side of every move and in the final part of the tables. Secondly, a table containing 12 technical manuals from the field of engineering and technical devices will be also analysed, including user manuals, operator manuals and a brochure manual. In this table the same analysis pattern will be applied, (all moves detected will be marked with “√”) and possible variations and changes will be also displayed. Thirdly, a second comparison table of four electronic devices and one technical manual about natural stone products will be examined. Within this group, user and
operator manuals can be distinguished. This is intended to apply Lassen’s scheme and see in which way this move-step analysis might be adapted to a wide range of technical manuals of different products and areas of specialisation, but always within the field of technical communication. Furthermore, the final table will display the number and percentage of move occurrences in all the technical manuals analysed, and which type of variations and changes has been undertaken. It may be noted that the same analysis patterns have been applied to all tables. In addition, move occurrences and percentages have been calculated manually due to the fact that the corpus here is not wide enough to apply percentages programmes.

Finally, a table with highlighted aspects and relevant comments from the move-step structure application has been included after the table analyses, which notes down the most relevant peculiarities from each manual and forms another element of the analysis procedure.
PARALLEL AND CONTRAST TABLES (See pp. 114-129 for Highlighted Aspect and Relevant Comments of Tables):

<table>
<thead>
<tr>
<th>M1. Establishing contact and orienting the reader towards the text and the product</th>
<th>M2. Inducing action</th>
<th>M3. Anticipating and solving problems</th>
<th>M4. Continuing contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cues</td>
<td>* Cues</td>
<td>* Cues</td>
<td>* Cues</td>
</tr>
<tr>
<td>* Introduction</td>
<td>* Action (installation, operation, etc.)</td>
<td>* Action (maintenance, lubrication, correct handling, repair, etc.)</td>
<td>* Action (how to order spare parts, etc.)</td>
</tr>
<tr>
<td>- Description - Definitions - Specifications</td>
<td>- Result</td>
<td>- Result</td>
<td>- Reference to dealers</td>
</tr>
<tr>
<td>* Warnings</td>
<td>- Explanation</td>
<td>- Explanation</td>
<td></td>
</tr>
<tr>
<td>- Safety</td>
<td>- Aside</td>
<td>- Aside</td>
<td></td>
</tr>
<tr>
<td>- Evaluation (to motivate customer satisfaction)</td>
<td>* Warnings</td>
<td>* Warnings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Warranty</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inger’s Move-structure model for the genre analysis of technical manuals:

| Symbols: ** = obligatory step; * = semi-obligatory step; - = non-obligatory step |
|---|---|
| ** Introduction | * Action (installation, operation, etc.) | * Action (maintenance, lubrication, correct handling, repair, etc.) | * Action (how to order spare parts, etc.) |

2 Cues include one or all of the following components:

- Headings
- Preview
- Metatext
- Index
- Table of contents

NOTES: Abbreviations and symbols in the following tables: HA: Highlighted Aspects; p./pp.: page(s); GC: General Comments; InM(s): Instruction Manual/(Manuals); CH: Characteristics; IG: Installation Guide; CM: Care&Maintenance; TM: Training Manual; BM: Brochure Manual; UM: User’s Manual; OM: Operator’s Manual; Ms: moves; Ss: steps; TC: Table of Contents; TS: Trouble-Shooting; > high /high number; < few.
III.3.1. Table for the Genre Analysis of the “Silestone Fabrication Manual-Instruction Manual”

<table>
<thead>
<tr>
<th>Inger’s move-structure M1</th>
<th>M2. Inducing action</th>
<th>M3. Anticipating and solving problems</th>
<th>M4. Continuing contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1. Establishing contact and orienting the reader towards the text and the product</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>*1 Cues2</td>
<td>√</td>
<td>* Cues</td>
<td>√</td>
</tr>
<tr>
<td>* Introduction</td>
<td>√</td>
<td>* Action (installation, operation, etc.)</td>
<td>√</td>
</tr>
<tr>
<td>- Description</td>
<td>√</td>
<td>- Result</td>
<td>- Result</td>
</tr>
<tr>
<td>- Definitions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Specifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Warnings</td>
<td>√</td>
<td>-Explanation</td>
<td>- Explanation</td>
</tr>
<tr>
<td>- Safety</td>
<td>√</td>
<td>- Aside</td>
<td>- Aside</td>
</tr>
<tr>
<td>- Evaluation (to motivate customer satisfaction)</td>
<td>√</td>
<td>* Warnings</td>
<td>√</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Warranty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Trouble-Shooting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Problem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Cause</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* Action</td>
</tr>
</tbody>
</table>
III.3.2. Table for the Genre Analysis of the “Silestone Training Manual-Installation Guide”

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1. Establishing contact and orienting the reader towards the text and the product</td>
<td>√</td>
<td>M2. Inducing action</td>
<td>√</td>
<td>M3.* Anticipating and solving problems</td>
<td>√</td>
<td>- M4. Continuing contact</td>
<td>√</td>
</tr>
<tr>
<td>* Cues</td>
<td></td>
<td>* Cues</td>
<td></td>
<td>* Cues</td>
<td></td>
<td>* Cues</td>
<td></td>
</tr>
<tr>
<td>* Introduction</td>
<td>√</td>
<td>* Action (installation, operation, etc.)</td>
<td>√</td>
<td>* Action (maintenance, lubrication, correct handling, repair, etc.)</td>
<td>√</td>
<td>* Action (how to order spare parts, etc.)</td>
<td>√</td>
</tr>
<tr>
<td>- Description</td>
<td>- Result</td>
<td>√</td>
<td>- Result</td>
<td></td>
<td>- Reference to dealers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Definitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Warnings</td>
<td>- Explanation</td>
<td>√</td>
<td>- Explanation</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Safety</td>
<td>- Aside</td>
<td>√</td>
<td>- Aside</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Evaluation (customer’s satisfaction)</td>
<td>* Warnings</td>
<td></td>
<td>* Warnings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Warranty</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Trouble-shooting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Cause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>* Action</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III.3.3. Table for the Genre Analysis of the “Silestone Brochure Manual”

<table>
<thead>
<tr>
<th>M1. Establishing contact and orienting the reader towards the text and the product</th>
<th>√</th>
<th>M2. Inducing action</th>
<th>√</th>
<th>M3. Anticipating and solving problems</th>
<th>√</th>
<th>- M4. Continuing contact</th>
<th>√</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1 Cues2</td>
<td>* Cues</td>
<td>* Cues</td>
<td>√</td>
<td>* Cues</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Introduction</td>
<td>√</td>
<td>* Action (installation, operation, etc.)</td>
<td>* Action (maintenance, lubrication, correct handling, repair, etc.)</td>
<td>√</td>
<td>* Action (how to order spare parts, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Description</td>
<td>√</td>
<td>- Result</td>
<td>- Result</td>
<td>√</td>
<td>- Reference to dealers</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>- Definitions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Warnings</td>
<td>- Explanation</td>
<td>- Explanation</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Safety</td>
<td>- Aside</td>
<td>- Aside</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Evaluation (to motivate customer satisfaction)</td>
<td>* Warnings</td>
<td>* Warnings</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Trouble-shooting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Problem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Cause</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III.3.4. Comparison Table for the Genre Analysis of other “Technical Manuals I (12 Engineering Technical Devices)”

<table>
<thead>
<tr>
<th>ABBFMT500 O.M.</th>
<th>ADAM4000 U.M.</th>
<th>Burkert O.M.</th>
<th>Cuadalimeter 50P O.M.</th>
<th>CI trans. O.M.</th>
<th>Currentsensorresistor B.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>M2</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>M3</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M4</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP. 1</td>
<td>102</td>
<td>425</td>
<td>16</td>
<td>40</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIH10 O.M.</th>
<th>EAJ510-530 U.M.</th>
<th>Mitsubishi Electric FR-S540E O.M.</th>
<th>Omnigrad O.M.</th>
<th>TR10-C Transmissor O.M.</th>
<th>Valvulaburker 2031_op O.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>M2</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>M3</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>M4</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>PP. 2</td>
<td>4</td>
<td>67</td>
<td>192</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>

1 Total amount of pages.

2 Total amount of pages.
III.3.5. Comparison Table for the Genre Analysis of other Technical Manuals II

(4 Electronic Devices, 1 Natural Stone Product)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>√</td>
<td>√</td>
<td>(</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>M2</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>M3</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>M4</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PP.</td>
<td>50</td>
<td>130</td>
<td>48</td>
<td>36</td>
<td>26</td>
</tr>
</tbody>
</table>

3 Total amount of pages.
III.3.6. Number and Percentages of Move Equivalence with Lassen’s Move-Model

<table>
<thead>
<tr>
<th></th>
<th>Silestone’s Instruction manual</th>
<th>Silestone’s Training manual</th>
<th>Silestone’s Brochure manual</th>
<th>Engineering User’s manuals (InMs)</th>
<th>Engineering Operator’s manuals (InMs)</th>
<th>Engineering Brochure manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>2 out of 2 (100%)</td>
<td>8 out of 9 (89%)</td>
<td>1 out of 1 (100%)</td>
</tr>
<tr>
<td>M2</td>
<td>100%</td>
<td>100%</td>
<td>0%</td>
<td>2 out of 2 (100%)</td>
<td>8 out of 9 (89%)</td>
<td>0 out of 1 (0%)</td>
</tr>
<tr>
<td>M3</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>2 out of 2 (100%)</td>
<td>5 out of 9 (56%)</td>
<td>0 out of 1 (0%)</td>
</tr>
<tr>
<td>M4</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>0 out of 2 (0%)</td>
<td>6 out of 9 (67%)</td>
<td>1 out of 1 (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Electronics User’s manual<sup>4</sup></th>
<th>Electronics Operator’s manual</th>
<th>Natural Stone User’s manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 out of 3 (33%)</td>
<td>2 out of 2 (100%)</td>
<td>1 out of 1 (100%)</td>
<td></td>
</tr>
<tr>
<td>3 out of 3 (100%)</td>
<td>2 out of 2 (100%)</td>
<td>1 out of 1 (100%)</td>
<td></td>
</tr>
<tr>
<td>3 out of 3 (100%)</td>
<td>2 out of 2 (100%)</td>
<td>1 out of 1 (100%)</td>
<td></td>
</tr>
<tr>
<td>2 out of 3 (67%)</td>
<td>2 out of 2 (100%)</td>
<td>0 out of 1 (0%)</td>
<td></td>
</tr>
</tbody>
</table>

⁴ Manual type: Instruction.
III.3.7. Highlighted Aspects and Relevant Comments –

Variations and Changes in the Technical Manuals (from pp. 108-113)

*(Examples are given in *italics* and Move’s elements are in indicated by “” or underlined)*

III.3.7.1. Table for the Genre Analysis of the

“Silestone Fabrication Manual – InM”

<table>
<thead>
<tr>
<th>M1: Establishing contact and orienting the reader towards the text and the product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cues2: “Cues” have been also applied to make reference not only to headings, preview, metatext, index or table of contents, but also to pictures to help with “explanations”.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Introduction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Description</td>
</tr>
<tr>
<td>- Definitions</td>
</tr>
<tr>
<td>- Specifications: “Definitions” and “specifications” appear randomly in the structure sequence (e.g. p. 63)</td>
</tr>
<tr>
<td>As GC: Move-structure is quite ordered and complete.</td>
</tr>
</tbody>
</table>

| **Warnings:** They appear after “introduction” with its corresponding sub-step (p. 66); not many. |

| **Safety:** “Warnings” appear followed by the semiobligatory sub-step “safety” (e.g. p. 66), and “safety” takes the role of non-obligatory step under this move. |

| **Evaluation (to motivate customer satisfaction):** Sub-step. Not very often occur. It may take place within other moves as in pp. 63, 65, within the non-obligatory step “description”. |

| **Changes/Additions:** Non-obligatory “M4. Continuing contact” may function as a |
non-obligatory step taking part in other moves such as in M1 (p.65).

**M2: Inducing action

Cues: “Cues” have been also applied to make reference not only to headings, preview, metatext, index or table of contents, but also to pictures to help with “explanations”.

GC: Cues are present throughout the whole text.

* Action (installation, operation, etc.): “Action” goes together with “explanation”

(p. 72)

* Warnings: They appear between actions.

Additions: “M4 Continuing contact” occurs in M2 as non-obligatory step (pp. 69-70) and as an independent move (p. 73). At the same time, “warnings” are present as an independent and general section by constituting a sole move, in this case “M5.Warnings” (p.73). These two new additions take place with the corresponding steps and sub-steps established by Lassen

*M3: Anticipating and solving problems

* Cues: They have been also applied to make reference not only to headings, preview, metatext, index or table of contents, but also to pictures to with “explanations”. Therefore, Cues are present throughout the whole text and are inserted below the “explanation”.

* Action (maintenance, lubrication, correct handling, repair, etc.): “Introduction: “description” + “specifications”” / “Definitions” precedes “action” (p. 76)

“Result”, “explanation” and “aside” are implicit in the action, therefore, in this analysis
they are considered as sub-steps, and they can occur throughout the actions (p. 77)

* **Warnings:** Although they usually follow action, sometimes they are present as an independent move with its own steps and sub-steps such as “safety” as non-obligatory sub-step (p. 86).

* **Trouble-Shooting**
 * **Problem**
 * **Cause**
 * **Action:** Here action is followed by “introduction” and in most cases by “description” (non-obligatory step) with “definitions” or “specifications” as sub-steps as an addition to TS (p. 76)

- **M4: Continuing contact**

M4 appears as a non-obligatory step with its sub-steps and sometimes constitutes a pure move as in the examples above.

* **Cues:** They occur in headings and pictures to help with the “explanation” of actions.

* **Action (how to order spare parts, etc.):** Sometimes “reference to dealers” appears as “reference to customers”.

GC of the 3 manuals: “Cues” are present throughout the whole text by taking an important role in the “description” and “explanation” of the information; “description” with its corresponding sub-steps “definition” & “specifications”, “explanation”, result and “aside” takes an important role in manuals, where “specification” always makes reference to main characteristics/features of the product either by 1. “description” or by 2. specific information (e.g. 1. *The product has a high performance*; 2. *high durability*); “explanation” is in most cases implicit in the action by adding a specific feature to the verb meaning (e.g. **Action:** *Regular*(specific feature) cleaning and maintenance [explanation] of Silestone “Leather” finish will help maintain its luxurious texture
“asides” use to appear in brackets and are viewed as additional information (e.g. (Tel. number +34 950 444 175) \textit{(aside)}). Followed by the creation of new moves as M4 or M5, these are the most relevant aspects in step, sub-step behavior.

III.3.7.2. Table for the Genre Analysis of the “Silestone Training Manual - IG”

| **M1**: Establishing contact and orienting the reader towards the text and the product |
| It is only composed of “introduction”. |

| **M2**: Inducing action |
| * Cues: They have been also applied to make reference not only to headings, preview, metatext, index or TC, but also to pictures to help with “explanations”. Therefore, “cues” are present throughout the whole text and are inserted below the action “explanation”. |
| * Action (installation, operation, etc.): “Result” and “explanation” are taken as sub-steps within “action” (p. 93). |
| - Aside: They appear in the way of “Note” within “action” (p. 96). |

| * Warnings: No warnings. |

| Additions: In the step “action”, the non-obligatory “M4.\textit{Continuing contact}” sometimes is represented by a sub-step making “reference to dealers” (p. 93) and making “reference to customer” (p. 96). |
M3: Anticipating and solving problems

Cues: They have been also applied to make reference not only to headings, preview, metatext, index or TC, but also to pictures to help with “explanations”.

GC: “Cues” are present throughout the whole text.

Action (maintenance, lubrication, correct handling, repair, etc.): “Action” is performed by making continuously “reference to customer” (p. 96). Therefore, “reference to customer’s” is inserted as sub-step. “Aside” is also inserted in action as sub-step.

-Warranty is inserted between actions (p. 96)

M4: Continuing contact

Cues: They have been also applied to make reference not only to headings, preview, metatext, index or TC, but also to pictures to help with “explanations”. Therefore, “cues” are present throughout the whole text and are inserted below the “explanation” of the action.

Action (how to order spare parts, etc.): It refers to how to act when defect or problem arises (p. 84).

- “Reference to dealers”: “Reference to dealers” (inserted as sub-step of “action”). It occurs throughout the whole text. However, in p.96 it appears as “reference to customers”.
III.3.7.3. Table for the Genre Analysis of the “Silestone Brochure Manual” - BM

M1: Establishing contact and orienting the reader towards the text and the product

*1 Cues2: “Cues” here are mainly headings and brochure full of colours in three folded pages.

Introduction (+Evaluation): Silestone is the world leader in quartz surfaces. Available in over 100 distinctive through-body colours and textures. Silestone is ideal for use in a wide variety of applications

- Description
 - Definition
 - Specifications: In the “description” part, only “specifications” occur – indicated by the heading “SILESTONE CHARACTERISTICS” (high durability, colour consistency, low maintenance) (p. 101).

- Evaluation (to motivate customer satisfaction): “Evaluation” takes place before “description” (Silestone by Cosentino is the only quartz surfacing material in the world) (p. 101)

No **M2: Inducing action**

M3: Anticipating and solving problems

* Cues: “Cues” are mainly headings.

* Action (maintenance, lubrication, correct handling, repair, etc.): In the “action”, the sub-steps “result” and “explanation” are implicit in the text: Regular cleaning and maintenance [action/explanation] of Silestone Leather finish will help maintain its...
luxurious texture [result] (p.101).

* **Warnings:** They appear after the TS step as “general precautions” (p. 102)

* **Trouble-shooting**
 * **Problem**
 * **Cause**
 * **Action:** TS follows the same Lassen’s structure with “problems”, “actions” and “cause” (p. 102).

-M4: Continuing contact

- **Reference to dealers:** In the way of “-reference to dealers’ address” (p. 102)

III.3.7.4. Comparison Table 1 for the Genre Analysis of other

“Technical Manuals I (12 Engineering Technical Devices)”

ABBFMT500: Moves can be deduced from TC; >“warnings” and “specifications”, “safety” as taking part in action from M2; > “cues” (headings and pictures) and high quality of pictures (in colour) to help with “explanation” and “description”. “Description” and “specification of data” dominates the manual.

GC: TC

Examples: Thermal Mass Flowmeter FMT500-IG(Sensyflow iG):

TC: 1 Correct use, general safety instructions, 2 Important information in advance, 3 System ““description””, 4 Mechanical installation, 5 Electrical installation of standard and cat. 3 (zone 2/22) versions, 6 Electrical installation in potentially explosive areas, 7 Commissioning – safety instructions, 8 Display, operation and parameterization, 9
M1: Chapters 1,2,3 (although safety appears in different order before information); M2: 4,5,6; M3: 9,13; M4: 17,18; description & specification of data:

Nominal pipe sizes:
Pipe component type 2: measuring section DN 25, 40, 50, 65, 80 – ASME 1”, 1½”, 2”
(Process connection: flanges accord. to EN1092-1 Form B1, PN 40 (DIN 2635, Form C) resp. ASME B 16.5, Cl. 150/300 (ASME)

ADAM4000: Moves can be deduced from TCs; > “specifications” and “description” (this manual may be considered as a report). No “warnings”; > “cues” (headings and pictures); high quality of pictures (screen shots), “description” and “explanation”; it could be suggested that due to the frequency of “specifications” in this manual, a sole move “specifications” may be created. Moves are incomplete, full of “specifications” and “description”.

Examples:

TC: Chapter 1 Introduction, Chapter 2 Installation Guideline, Chapter 3 I/O Modules, Chapter 4-8 Commands, Appendix A Technical Specifications, Appendix B Data Formats and I/O Ranges, Appendix F How to use the Checksum feature, Appendix H Changing Configuration to Modbus Protocol.

F: (A checksum helps you detect communication errors between the host and module. This feature adds two extra checksum characters to the command or response string; therefore, it reduces the throughput) M3

H: M3: If the module is connected to a Modbus network, the Modbus network may not recognize the module. This may be caused by the incorrect settings. ADAM-4000 module should be set up for Modbus protocol instead of ADAM ASCII protocol > correct handling; With the module powered off, turn the switch in the “Init” position.
(For some older Adam models, use an external wire to connect the
INIT* terminal to the GND terminal) → action

Incomplete: no TS

<table>
<thead>
<tr>
<th>Burkert:</th>
<th>No TC; > “specifications” with pictures(cues), with > tables and figures; no “warnings”; high quality of pictures; “specifications” dominate the manual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples:</td>
<td></td>
</tr>
<tr>
<td>M1: The paddle-wheel flow transmitter for continuous flow measurement and batch control is specially designed for use in neutral and slightly aggressive, solid-free liquids.(introduction); Advantages / Benefits Easy System integration by Easy LINK provides low cost of ownership Compact design(description); M2: The flow transmitter can be installed in either horizontal or vertical pipes.(action)+“specifications” which are inserted along the moves in the manual → Specification of nominal flow: 10 m³/h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuadalimeter 50P :</th>
<th>TC; M3 do not follow Lassen’s order. M1,M2 ,M3 are inserted in random order; >“specifications” and tables that serve as “explanation”; “warnings” occur briefly in most of Ms in the way of cautions; high quality of pictures. In addition, high occurrence of “description” and “specifications”, especially at the beginning of the manual. Ms are not clearly defined in the manual and incomplete of moves and steps.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples:</td>
<td></td>
</tr>
<tr>
<td>TC → Function and system design, Input&Output, Power Supply, Performance Characteristics(Promag 50:Pulse output: ± 0.5% o.r. ± 1 mm/s (o.r. = of reading)) → Intro+specifications in M1; M3 precedes M2→Operating conditions, Installation conditions, Environment, Process conditions(correct handling) action from M2 gets blurry with action from M3 (correct handling of operations);M4-Ordering Information(The Endress+Hauser service organisation can provide detailed ordering information and information on the order codes on request); >specifications: The Endress+Hauser service organisation can provide detailed ordering information and information on the order codes on request.</td>
<td></td>
</tr>
</tbody>
</table>
Warnings: Caution! Risk of damage from electrochemical corrosion.

CI transmitter: No TC. No “warnings”; full of tables and their subsequent “explanation”, >“description” & “specifications”; > pictures as “explanation”. M2 governs the whole manual where the step “action” dominates the text.

Examples:

PRODUCT DESCRIPTION

The AD694 is a monolithic current transmitter that accepts high level signal inputs to drive a standard 4–20 mA current loop for the control of valves, actuators, and other devices commonly used in process control. (description is inserted in M2, description goes together with action) The AD694 can easily be connected for either dual or single supply operation, to operate from supplies as low as 4.5 V and as high as 36 V.

Current sensor resistor: TC; >“description”, “specifications” and “definitions”; “reference to dealers”; > quality of pictures and headings (cues); no “warnings”. The manual is governed by the step “description”, “definitions, “specifications” and “data specification” in tables. It has the appearance of a brochure manual due to its design. GC: No action ➔ Brochure Manual

Examples:

The manual starts with an Evaluation before introduction in M1 ➔ Quality and Reliability: TTI is a quality driven organization that achieves world class quality levels.; Introduction as a way of information: TTI carries a wide variety of current sensing products from the industry’s leading manufacturers, such as Vishay, IRC, KOA, Panasonic, and Ohmite; Evaluation appears along the manual through the headline “Features and Benefits”.

Definitions are also specified in the way of a glossary ➔ Bulk Resistor: A resistor made by providing ohmic contacts between two points of a homogenous, uniformly doped material.

M4: TTI also provides several personalized extranet products and services for customers
that assist in managing their supply chain online and in real time + company’s address.
To access any of these services, contact the nearest TTI sales representative at 1-800-CALL-TTI (225-5884).

DIH10: >“Description”, “specifications”; > pictures to understand “warnings”, which dominate the manual are followed by safety and combined with actions. M4 appears briefly at the end of the manual.

GC: O.M. makes reference to the person who should work with indications. “Safety” from M1 is inserted in warnings from M2.

Examples:

M2: Important notice: Follow this instruction strictly safety+warnings: Never connect directly to a voltage supply (eg. 24 VDC)...; a clear **Action** \(\rightarrow\) **Change the program number by simultaneous pressing of & keys or & keys.**

M4: Modifications may take place and materials specified may be replaced by others without prior notice +address.

EAJ510-530: Ms-structure deduced from TC; “warnings” may constitute proper steps and dominate the text. They also function as sub-steps within moves; moves clearly differentiated through headings (installation; trouble-shooting; maintenance) in a quite organized order. “Specifications” (section 10) could be regarded as an independent step due to its relevance in the manual. Moves are clearly differentiated by CAPITAL LETTERS, whereas steps in small letters, see M3 below.

Examples: from TC \(\rightarrow\) 1.**Introduction**+2.**Handling Cautions, under 2“specifications”, Approval Standards and Certificates (evaluation) + 3.”“description”” (clear **M1**):4.**INSTALLATION,7.OPERATION**+other section under them full of data “specification”+ “explanation” (M2): 8.5.1 **Checking for Problems, 8.5.2 Errors and Countermeasures**

Countermeasures \(\rightarrow\) **ERROR CAP MODULE FAULT-Cause: Capsule problem.*1- Output Operation during Error:** Outputs the signal(Hold, High, or Low)set with
Countermeasure: Replace capsule.*2 (Clear Trouble-shooting section) that precedes Action in M3: MAINTENANCE /M3 (with actions: Removing the Integral Indicator accompanied by Warnings in the way of: Cautions for Flameproof Type Transmitters), 9.5.Trouble-Shooting (as a clear step in M3); 10.GENERAL “SPECIFICATION”S ➔ fills an important part of the manual as a separate move with its corresponding steps and sub-steps (10.1.Standard Specifications, 10.3.Optional Specifications, 10.4.Dimensions).

Mitsubishielectric FR-S540E: M1 with only “warnings”; “warnings “and TC after M1; “description & specifications” govern M2; pictures as “explanation”. Structure deduced from TC (Moves: CAPITAL LETTERS; Steps: small letters). “Specifications” might constitute an independent move. M4 may be also considered due to the > addresses provided.

Examples:

M1: short Introduction ➔ Cautions for Flameproof Type Transmitters, followed by Safety matters (where it includes all caution & warnings: Cautions for Flameproof Type Transmitters), then safety precedes warnings in M1; from TC ➔ M2 ➔ T1: 1.WIRING (with how to use sections), 2.FUNCTIONS (Operation functions, etc.), 5.OPERATING INSTRUCTIONS (not ordered); M3: PROTECTIVE FUNCTIONS (action) + 3.2.Troubleshooting + 3.3.Precautions (=Warnings appears after TS); 4.SPECIFICATIONS (with steps: Peripheral and Operating Specifications) therefore specifications ➔ as an independent move.

Omnigrad MTC12: “Description & specifications” dominate M1; “evaluation” occurs as step in M2 by Certificates & Approvals or it might be also considered as a different section. Ms&Ss are spread randomly along the manual but they cannot be classified as independent moves due to a lack of consistent structure within them, therefore it can be concluded that Ss from different moves take part in all the Ms. Move information is not complete or really informative.
Examples:

M1: **Introduction** *(The TC 12 Omnigrad M range temperature sensors are thermocouples designed for use...)* + **description/specifications** *(Material, Weight); a clear M2 by heading INSTALLATION + description/explanations** *(The housing, which contains the electric terminals or the transmitter, is available in different types and materials...); M3 (Operating Conditions), Maintenance information (it appears isolated); M4: Ordering Information *(incomplete).*

TR10-C Transmissor: “Description & specifications supported by pictures dominate M1; > pictures & tables to help with “explanations”. M4 at the end of manual.

Examples:

M1: “description” → *Description resistance thermometers in this series are designed for direct screw fitting into the process, mainly in tanks and pipelines; M4: Modifications may take place and materials specified may be replaced by others without prior notice.*

Valvulaburker 2031_op: Ms deduced from TC; “warnings” dominate M1; “warnings” function as dominant steps in M2, M3; tables dominate manual instead of pictures. Ms are simple without containing most of the steps.

Examples:

From TC: M1→ **GENERAL NOTES** *(specifications), TECHNICAL DATA (introduction); M2: INSTALLATION (Assembly, Connecting, action); M3: MAINTENANCE (Correct Handling: Before dismantling or opening the unit, always switch off the freed of the media and relieve the pressure in the pipe system.) + warnings *(ATTENTION! Muddy and aggressive media will require correspondingly shorter inspection intervals.)*
III.3.7.5. Comparison Table 2 for the Genre Analysis of other

“Technical Manuals II (4 Electronic Devices, 1 Natural Stone Product)”

<table>
<thead>
<tr>
<th>HA: Highlighted Aspects</th>
</tr>
</thead>
</table>
| **Panasonic technical support AD Converter:** M1&M2 may be deduced from TC (INTRODUCTION, GETTING STARTED). “Warnings” precedes introduction in M1; M4 precedes M1 with “reference to dealers”; “description” & “specifications” dominate the text; Ms are repeated along the Ms, e.g., M2 becomes a step in M3 in p.30; pictures help with “description” and “action”, and the manual does not offer a good visual quality. “technical specification” appears isolated and might be considered as a whole move since it also has subsection which may be regarded as steps. Ms are randomly displayed.

Examples: M4 appears at the beginning of the manual by Technical Support, the action step always appear with M2 characteristics (Connecting, Setting, etc.)

| **iPHONE User’s Guide:** Ms deduced from TC (only M2, M3, M4); headings (cues) make reference to Ms (activating and setting up; tips & troubleshooting); “definitions” & “specifications” dominate the text and screen shots help with “explanation”; > quality of screen shots. “Description”+“explanation” of product are used before action in M2 so a mixed introduction from M1 is found directly in M2. Warnings are specified briefly in every section. Technical Information+Specifications are blurred with “explanation” along the manual and interchangeably appear throughout moves. Therefore, it is difficult to differentiate the step “description” from “explanation” in the manual.

Examples:

From TC: M2 (description/explanations+action -in this order- dominate most chapters by dealing with Activating and Setting Up iPhone e.g.: **Surfing the Web:** Safari lets you see webpages just as they were designed to be seen in computer-based browsers. A simple
double tap lets you zoom in; rotate iPhone sideways for a wider view. Search using Google or Yahoo!-both are built-in. (description + explanation)

Opening and Navigating Webpages, Open a webpage: Tap the address field at the top of the screen, type the web address, etc.

M3: If clicking the mic button on the headset doesn’t resume music playback (Problem) iPhone goes to sleep after music has been paused for five minutes. Press the Home or Sleep/Wake button to wake up iPhone. (action)

M4: There’s more information about using iPhone, in onscreen help and on the web. The following table describes where to get more iPhone-related software and service information, etc. (reference to dealers)

Planar PD42ED, Plasma TV, User’s Guide: Ms deduced from TC; “warnings” + “safety” introduce the manual; headings (cues) clearly indicate Ms (Quick Start, set-up instructions, troubleshooting, customer service); > quality of pictures and screen shots to help with “description”, “definitions” & “specifications”.

Technical Information + Specifications are blurred with “explanation” along the manual and interchangeably appear throughout moves. Therefore, it is difficult to differentiate the step “description” from “explanation” in the manual.

In **M3 TS** appear before action (maintenance), warranty aspects takes place before TS and occupy an important part at the end of the manual by constituting a step. Sometimes, “warranty” interchange its role by becoming a step and “warnings” the sub-step in M3 as in this manual

SANYO TV-Instruction Manual FLAT PANEL TV: “Warnings” dominate and introduce M1; Ms are identifiable through the TC; headings (cues) indicate Ms (System Setup (M2), Troubleshooting (M3)); pictures (cues) help with “description”, “definitions” & “specifications”, “specifications” are interchanged along the manual in a random order and M3 lacks of Action but presents most of its moves though in different order. It also
introduces “specifications” from M1. M4 appears as a sub-step of “warranty”.

Examples:

M3 content and order: Troubleshooting – Specifications-Warranty. M4 as sub-step in “Warranty” at the end of the manual: HOW TO OBTAIN WARRANTY WERVICE: Please contact the Sanyo Authorized Dealer from whom the product was purchased or contact us directly at:..., etc.

Natural Stone Surrounds FABER IG: Ms deduced from TC by headings (Introduction, Safety Precautions, Preparation, Assembly of the surround, Cleaning & Maintenance); drawings help with “‘description’” of action (assembly of the surround). M1 is constituted by only Introduction + Safety Precautions. Manual design appears unattractive for user.

III.3.7.6. Summary Table: Number and Percentages of Move Equivalence with Lassen’s Move-Model

Silestone’s Instruction manual: The manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps. Steps and sub-steps occur in different order or take part within other moves.

“Cues” are considered as headings and pictures; “explanation”, “result” and “aside” are not taken as sub-steps but as implicit within action, regarding “aside” as implicit in information.

Silestone’s Training manual: The manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps. Steps and sub-steps occur in different order or take part within other moves.
“Cues” are considered as headings and pictures; “explanation”, “result” and “aside” are not taken as sub-steps but as implicit within action, regarding “aside” as implicit in information.

Silestone’s Brochure manual: The manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps. Steps and sub-steps occur in different order and do not take part within other moves.

“Cues” are considered as headings and pictures; “explanation”, “result” and “aside” are not taken as sub-steps but as implicit within action, regarding “aside” as implicit in information.

Engineering User’s manuals (instruction manuals): The manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps. Steps and sub-steps occur in different order or take part within other moves; “warnings”, “definitions and specifications” dominate steps, sub-steps and the text.

Engineering Operator’s manuals (instruction manuals): The manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps. Steps and sub-steps occur in different order or take part within other moves; “warnings”, “definitions and specifications” dominate steps, sub-steps and the text.

Engineering Brochure manual: The manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps. Steps and sub-steps sometimes occur in different order; style changes from one manual to another, depending on the field of specialization.

Electronics User’s manual (instruction manuals): Even though the manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps, moves are mixed with others following a different order; steps and sub-steps occur randomly (e.g. “warnings”) or take part within other moves.
Electronics Operator’s manual (instruction manuals): Even though the manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps. Moves are alternated with others following a different order; steps and sub-steps occur in different order (e.g. warnings) or take part within other moves.

Natural Stone User’s manual (instruction manuals): The manual complies with M1, M2, M3, M4 and main obligatory and semiobligatory steps. However, not all steps and sub-steps occur.
Part IV

DISCUSSIONS AND CONCLUSIONS

IV.1. Discussions

As seen from the table “Silestone fabrication manual”, considered to be an Instruction Manual, almost all the moves M1, M2, M3 and M4 occur through the different parts of the text. However, as previously commented in the analysis, some moves and steps might be located at diverse places or might be present in a different move such as the non-obligatory move “M4 - Continuing contact”. This move functions in the manual as non-obligatory steps in M1s and M3s. In terms of additions to Lassen’s genre analysis model it is worth mentioning the possibility of considering a new move “M5 - Warnings” due to the fact that this move occurs independently and does not coincide with any of the other moves in the manual. In this case, “warnings” works independently as a solid move, both in content and structure.

With reference to the “Silestone training manual”, the situation is similar to the other manuals under scrutiny: almost all moves occur accompanied by the respective changes in terms of steps, which naturally might be taken from other moves (“Introduction-Description”) or steps converted into sub-steps to best fit the text’s structure, as is the case with “result, explanation, aside” and “reference to dealers” under the step “action”. In terms of additions to Lassen’s genre analysis model it is worth mentioning the possibility of considering a new move “M5 - Warnings” due to the fact that this move occurs independently and does not coincide with any of the other moves in the manual. In this case, “warnings” works independently as a solid move, both in content and structure. As a general comment in this manual, M4 sometimes makes reference to customers instead of dealers as a new different aspect in comparison to Lassen’s movel-model.
Looking at the “Silestone brochure manual”, only M1, M3 and M4 are broken down. In brochure manuals, M3 is the most important move since it mainly deals with product care and maintenance and is where the steps mostly follow Lassen’s structure. Therefore, M3 dominates the manual which is accompanied by eye-catching cues (seen as headings and pictures) to draw customer attention to this innovative and original product (Silestone counter tops) that imitates natural stone. As regards moves in the engineering brochure manual, it only contains M1 and M4. This manual basically offers information about the product (general information about care and maintenance) - and information about the company.

On one hand, in user engineering technical manuals M1, M2 and M3 are present in 100% of the manuals; M4 does not occur in the texts. On the other hand, in operator manuals almost all moves are present: M1, M2 and M4 dominate the structure and M3 is shown in 56% of the manuals studied. Finally, the engineering brochure manual only shows M1 and M4, therefore the main purpose in this manual is “to inform” and no action takes place.

The electronic user manuals analysed show an occurrence of 100% of M2, M3, 33% of M1 and 67% of M4, as opposed to the electronic operator manuals examined in which all moves are included.

When examining the user manual about a natural stone product, its structure shows M1, M2 and M3, although brief company address information is specified before TC. Therefore, M4 appearance may be discussed. Generally, assembly instructions manuals emphasise the importance of product information and action, and thus the choice of M2 and M3. Furthermore, drawings viewed as cues play an important role as support of the actions in both M1 and M3.

When considering both Engineering and Electronic Manuals, it may be highlighted that moves can be basically inferred from their Table of Contents. It is also noteworthy how moves lack a few steps but, instead, “description and specifications” are well represented and may indeed constitute independent moves
with their corresponding sub-steps. In most cases, information and “specifications” are mixed with “explanations” and interchanged randomly along the moves. Therefore, it is sometimes difficult to distinguish the “description” step from the “explanation” one: “Planar PD42ED, Plasma TV, User’s Guide” and “iPHONE User’s Guide” are relevant examples. Finally, as the sample for analysis is larger in this set of manuals, we have appreciated how a higher number of new moves may be created and how steps such as “specifications” or “warranty” in M3 from Planar PD42ED, Plasma TV User’s Guide interchange their roles by behaving as sub-steps, and how “warnings” takes the role of a sub-step.

The above conclusions are based on the corpus analysed in this study. It has been tested by applying Lassen’s genre analysis model for technical manuals. Some changes in the genre structure have also been applied in an attempt to adapt the model to the corresponding communicative purposes in the different technical texts. In other words, the final purpose has been to demonstrate the acceptability of Bhatia and Lassen’s models. However, although these models (to a large extent Lassen’s model) have proved to be effective when we want to identify and break down a text in order to understand it better and see how it is constructed, some variations in the genre structure have been introduced. This has been due to the fact that texts are not fixed and static and, therefore, linguistic analysis models must be subject to changes, taking into consideration the current communicative purposes demanded by different professional areas.

It can be stated that Lassen’s model could be applied to all the manuals examined herein since most obligatory and semi-obligatory steps participate in the structure, even though each technical manual will display a particular move-step structure depending on the main communicative purposes which dominate the text. On the one hand, if the manual focuses on action and deals with installation or assembly instruction, M2 will be clearly found. On the other hand, if the manual deals with maintenance, treatment or care of the product, M3 may dominate the text. As has
been observed above, when talking about user or operator manuals it can be concluded in advance that M2s and M3s are likely to be encountered. In terms of the brochure manual, as its main purpose is to sell the product and draw customer attention, an eye-catching M1 may be indicated, specifying complete information about the product. Moreover, in M4 further information about dealers can also be found in case customers decide to buy the product. Accordingly, although Lassen’s model is perfectly applicable to any technical manual, from our perspective, it was necessary to undertake some changes and variations in the move-step model (e.g. changes in the move-step order, inclusion of new moves as M4 or M5, role changing of steps and/or sub-steps such as “explanation” or “result” which appear implicit in action, as well as omission of certain moves and steps in specific circumstances) in order to adapt and fit the genre model structures in terms of communicative purposes of the different texts.

Finally, it is interesting to comment on sub-step behaviour. We have seen here how in some cases sub-step meaning becomes blurred and it is difficult for the analyst to categorise them as “specifications” or “explanation”. In theory, both of them add a specific feature to the information. However, from the result of the analysis it can be stated for discussion purposes that “specifications” mainly deal with adjectives, nouns and also with whole sentences, whereas “explanation” adds a specific feature to the verb in the way of modifying adverbs which instruct actions to be performed in a precise manner. It is also worth highlighting how “specifications” in Silestone’s manuals are sometimes constructed in long sentences which could be also interpreted as explanations.

Finally, as seen from the results, every text deploys a specific communicative structure that gives rise to a new genre structure. Nevertheless, the analyst should take into account that texts within this field (technical texts) must fulfill a number of purposes and comply with a number of moves, obligatory and semi-obligatory steps which give sense to the writing and therefore make the intended communicative aim meaningful for users.
IV.2. Conclusions

The analyses and results of our approach have served to demonstrate and confirm that: 1. the analysis of technical texts has facilitated the ascertaining of how moves, steps and sub-steps behave in each specific case and how communicative purposes appear and vary among them. Furthermore, it may be said that Lassen’s model, although proven to be useful and feasible, requires some changes and variations in its communicative structure, always depending on the texts’ communicative needs; 2. once the analyses have been carried out, not only were some differences in structure or design identified but it was also revealed how each specialised text shows specific communicative ideas that need to be represented through moves, steps and sub-steps. Consequently, a modest proposal to improve some aspects of the genre analysis model application is suggested as a possible contribution to the field of genre analysis. Lassen’s model for technical manuals has been the skeleton to be filled in or modified with the new communicative demands of the corpus used here, however, some slight changes have been undertaken so that they might be used in future implementations of the analysis for technical manuals.

The need for specialised communication is increasingly important in linguistics and other disciplines. Professionals have also realised the importance of giving information properly in different specialised settings, such as business, engineering or any other specialised fields such as electronics, etc. This explains why they are interested in the study, organisation and structure of specialised texts, and the reason why they are written in prominent places. This takes us back to Bhatia’s questions: “why is a text written the way it is?” or “why do members of a specialised community construct texts the way they do?” (Bhatia 2004).

Genre analysis applied to different specialised settings is intended to offer a clear view of the description of language in specialised contexts. Texts are no longer seen as form and content, and genre is no longer perceived as the socio-pragmatic form into which the content is mirrored. However, texts are identifiable not only
through form but also through purpose, theme, writer and intended reader. This analysis has taken into account all these parameters and each manual collects a set of communicative purposes (see Lassen 2003). These communicative purposes that govern manuals are shown in certain moves with their respective steps and sub-steps. Therefore, Bhatia’s idea that communicative purposes shape texts, purposes which have allowed the creation of moves, has been the starting point of this analysis, although Lassen’s subsequent analysis aimed at technical manuals has served as a more precise model to follow. Lassen’s model has been adapted, whenever possible, to the technical texts collected here.

A sound conclusion has been reached: despite Lassen’s model being perfectly applicable to different technical texts; it must be subject to flexibility and variation in order to adapt itself to the current communicative needs which specialised texts demand. As a result, an adaptation of her structure to texts has been suggested, so that it can comply with changes, difficulties and novelties that specialised texts currently encounter, as in the case of ‘technical manuals’.

In terms of communicative purposes, it has been possible to identify the communicative purposes in each move and type of manual (instruction, training, brochure, etc., (see Lassen for technical manuals classification, 2003: 122), and through these communicative purposes, which are represented in the linguistic structures of moves, steps and sub-steps, readers can easily identify and classify texts (see Lassen for communicative purposes classification, 2003: 111). Lassen’s model is found to some extent in all the manuals of this study, however, the steps and sub-steps she proposes do not fit in a high number of cases in the sample studied. It is worth noticing that steps and sub-steps are more specific than moves in this analysis, and sub-steps may vary greatly depending on the degree of specialisation shown by technical manuals in the different professional areas. In addition, it may be stated that all technical manuals are subject to a linguistic structure because they share common communicative needs or purposes represented by the majority of obligatory moves and steps stated in Lassen (2003).
On the other hand, the more specific steps and sub-steps have not really complied with her order of steps and sub-steps.

The analyses show that Bhatia’s and Lassen’s models of genre analysis seem to hold true for the technical manuals studied, which proves the utility of analysing language and specialised communication through linguistic devices such as genre analysis. It is also worthwhile highlighting that genre analysis is not only a linguistic device for breaking down a language, but it also helps professionals to properly transmit the communicative purposes they want to send either in writing or orally. Therefore, factors such as an eye-catching design and a good organisation of content will influence the acceptability and accessibility of texts for readers (Lassen, 2003). Acceptability and accessibility depend on how these resources are used, how they are applied and whether they take into account such theories and patterns, areas of specialisation, context and the intended reader. In addition, in some cases acceptability and accessibility suggest the way in which the importance of marketing strategies is dealt with. It is necessary to consider all these elements to be successful in transmitting a message or achieving the writer’s purpose(s).

Apart from these particular features, in order to achieve a full acceptability and accessibility of texts, writers must consider the target audience. Therefore, “audience” is a key element in technical communication, because the accomplishment of the installation or even the success of the engineer depends on how the text has been performed. Consequently, professionals must be aware of these linguistic factors that involve accessibility of technical manuals and thus the workers’ success and the customers’ satisfaction. It is relevant to comment on this point because the success of companies or engineers depends on how they have coded the message. If the message has been correctly coded, the installation or assembly will be successful and will not present any difficulties during installation or assembly processes. On the contrary, the result of an error in
conveying the message involves misunderstandings which give rise to serious problems for companies and professionals.

As the field of ESP is continuously developing, “genre analysis” may result in a useful linguistic device for both linguists and professionals to understand how specialised texts are constructed. Consequently, the importance of creating new linguistic methods and models of analysis that allow users, students, professionals and researchers to understand the evolution and use of specialised languages as well as the managing of specialised texts through linguistic tools such as genre analysis is more than evident. Finally, the purpose of this research work has been to offer similar analysis proposals for the field of technical communication which will serve as a possible contribution in future genre analysis studies.
REFERENCES:

Comunicación Interlingüística e Intercultural, Departament de Teoria dels Llenguatges, Universidad de Valencia.

The following references are quoted by other authors that have not been consulted directly in this study:

• *Bhatia, V. K. (1982). An Investigation into Formal and Functional Characteristics of Qualifications in Legislative Writing and its Applications to

Lenguajes de especialidad y Lingüística del Corpus (pp. 193-203). Valladolid: Universidad de Valladolid (CL).

• *SCHIFKO, P. (2001). ¿Existen lenguas de especialidad? In M. Bargalló et al. (eds.), Las lenguas de especialidad y su didáctica (pp. 21-31). Tarragona: Universidad Rovira i Virgili.

Index

acceptability, 40, 42, 45, 60, 134, 138
accessibility, 45, 60, 138
analytical device, 6
Bhatia Models, 9, 49, 50, 57, 58, 61
Cabré Castellví, 11, 12, 13
communicative behaviour, 7
communicative demands, 136
communicative event, 7, 10, 15, 17, 18, 19, 46, 52
communicative intention, 47
communicative needs, 6, 8, 11, 24, 45, 48, 61, 87, 105, 136, 137
communicative purposes, 9, 14, 18, 19, 20, 25, 26, 28, 31, 32, 42-45, 46-48, 51-55, 57, 61, 62, 91, 92, 98, 106
communicative structure, 44, 45, 61, 135, 136
co-text, 10
customer satisfaction, 97, 99, 114, 119, 138
didactic suggestions, 1
discourse community, 2, 16, 18, 19, 27, 35, 44, 60
EOP, 7, 8, 27
ESP, 7-9, 139
EST, 13
extralinguistic context, 10
flexibility, 48, 49, 137
fuzzy concept, 16, 18
genre colonies, 22, 24
genre patterns, 45
goal-orientated social process, 51
Highlighted Aspects, 107, 114, 120, 127
LE, 12
independent move, 88, 115, 116, 125, 133
Inger Lassen, 3, 6, 10, 11, 19, 25, 28, 41, 87, 88, 90, 91, 92, 98, 106
innovation of genres, 21, 22, 25, 27
Integrity, 22, 27
intended reader, 44, 136, 137, 138
interdiscursivity, 22, 27
intertextuality, 14, 30
John Swales, 3, 8, 11, 15-20, 22, 27, 28, 41
Lassen’s Model, 50, 53, 54, 88, 89, 90, 103, 104, 105
linguistic device, 2, 45, 58, 138, 139
linguistic tools, 139
LSP, 6
Martin, 17, 19, 51, 52
Move occurrence, 106
parent genre, 2, 43, 55, 57, 58
pattern imposing, 27
pattern seeking, 27
Relevant Comments, 107, 114
specialised discourses, 19
specialized community, 136
specialized languages, 8, 9, 11-13, 15, 37, 139
specialized communication
suprasentential units, 7, 9
systems of genres, 22, 23
versatility, 24, 25, 27
Vijay Bhatia, 3, 9-15, 19-28, 32, 41, 46, 47, 48, 49, 50, 51, 53, 54, 55, 57, 60, 61, 57, 87, 88, 91
writer’s purpose, 138
written discourse, 6
Ángel Felices Lago

Dr. Ángel Felices Lago is a Tenured Senior Lecturer in the Department of English, Faculty of Economics and Business Sciences, at the University of Granada, Spain.

Dr. Ángel Felices Lago obtained his Ph.D in English Studies and Linguistics from the University of Granada, Spain.

Diana Fernández Lloret

Diana Fernández Lloret is a professional translator and a member of a LSP research group in the Department of English and German, at the University of Granada, Spain.